12 research outputs found

    Foldamers of β-peptides : conformational preference of peptides formed by rigid building blocks : The first MI-IR spectra of a triamide nanosystem

    Get PDF
    To determine local chirality driven conformational preferences of small aminocyclobutane-1-carboxylic acid derivatives, X-(ACBA) n -Y, their matrix-isolation IR spectra were recorded and analyzed. For the very first time model systems of this kind were deposited in a frozen (~10 K) noble gas matrix to reduce line width and thus, the recorded sharp vibrational lines were analyzed in details. For cis-(S,R)-1 monomer two “zigzag” conformers composed of either a six or an eight-membered H-bonded pseudo ring was identified. For trans-(S,S)-2 stereoisomer a zigzag of an eight-membered pseudo ring and a helical building unit were determined. Both findings are fully consistent with our computational results, even though the relative conformational ratios were found to vary with respect to measurements. For the dimers (S,R,S,S)-3 and (S,S,S,R)-4 as many as four different cis,trans and three different trans,cis conformers were localized in their matrix-isolation IR (MI-IR) spectra. These foldamers not only agree with the previous computational and NMR results, but also unambiguously show for the first time the presence of a structure made of a cis,trans conformer which links a “zigzag” and a helical foldamer via a bifurcated H-bond. The present work underlines the importance of MI-IR spectroscopy, applied for the first time for triamides to analyze the conformational pool of small biomolecules. We have shown that the local chirality of a β-amino acid can fully control its backbone folding preferences. Unlike proteogenic α-peptides, β- and especially (ACBA) n type oligopeptides could thus be used to rationally design and influence foldamer’s structural preferences

    Regenerative water sources on surfaces of airless bodies

    No full text
    © 2019, The Author(s), under exclusive licence to Springer Nature Limited. Spectroscopic signatures of water and hydroxyl radicals have been observed on the surfaces of asteroids1–3. As the lifetime of the exposed water ice is on the order of 104 to 106 yr in the inner asteroid belt4, there must be mechanisms to replenish the water in the absence of recent ice-exposing processes. However, such regenerative water-ice sources on asteroids are still elusive. Here we perform laboratory experiments by exposing the samples of the Murchison meteorite to energetic electrons and laser irradiation, simulating, respectively, the secondary electrons generated by the solar wind as well as galactic cosmic ray particles and the micrometeorites impacting on an asteroid. We find that a single simulated space-weathering component is insufficient and both are needed to regenerate water at low temperatures at the desired timescales. We propose that two main mechanisms can be the source of surface water on asteroids: low-temperature oxidation of organics and mineral dehydration

    Chiroptical studies on brevianamide B: Vibrational and Electronic Circular Dichroism confronted

    Get PDF
    Chiroptical spectroscopy, such as electronic circular dichroism (ECD) and vibrational circular dichroism (VCD) are highly sensitive techniques to probe molecular conformation, configuration, solvation and aggregation. Here we report the application of these techniques to study the fungal metabolite brevianamide B. Comparison of the experimental ECD and VCD spectra with the density functional theory (DFT) simulated counterparts establishes that VCD is the more reliable technique to assign absolute configuration due to the larger functional and dispersion dependence of computed ECD spectra. Despite a low amount of available material, and a relatively unusual example of using VCD carbonyl multiplets, the absolute configuration could be reliably predicted, strengthening the case for application of VCD in the study of complex natural products. Spectral evidence for or against the formation of a dimeric aggregate is discussed; in solution the VCD spectra strongly suggest only monomeric species are present.Chiroptical spectroscopy, such as electronic circular dichroism (ECD) and vibrational circular dichroism (VCD) are highly sensitive techniques to probe molecular conformation, configuration, solvation and aggregation. Here we report the application of these techniques to study the fungal metabolite brevianamide B. Comparison of the experimental ECD and VCD spectra with the density functional theory (DFT) simulated counterparts establishes that VCD is the more reliable technique to assign absolute configuration due to the larger functional and dispersion dependence of computed ECD spectra. Despite a low amount of available material, and a relatively unusual example of using VCD carbonyl multiplets, the absolute configuration could be reliably predicted, strengthening the case for application of VCD in the study of complex natural products. Spectral evidence for or against the formation of a dimeric aggregate is discussed; in solution the VCD spectra strongly suggest only monomeric species are present.Chiroptical spectroscopy, such as electronic circular dichroism (ECD) and vibrational circular dichroism (VCD) are highly sensitive techniques to probe molecular conformation, configuration, solvation and aggregation. Here we report the application of these techniques to study the fungal metabolite brevianamide B. Comparison of the experimental ECD and VCD spectra with the density functional theory (DFT) simulated counterparts establishes that VCD is the more reliable technique to assign absolute configuration due to the larger functional and dispersion dependence of computed ECD spectra. Despite a low amount of available material, and a relatively unusual example of using VCD carbonyl multiplets, the absolute configuration could be reliably predicted, strengthening the case for application of VCD in the study of complex natural products. Spectral evidence for or against the formation of a dimeric aggregate is discussed; in solution the VCD spectra strongly suggest only monomeric species are present
    corecore