
 1 

Chiroptical studies on brevianamide B: Vibrational and 

Electronic Circular Dichroism confronted 

 

Patrick Bultinck,1,2 Fanny L. Cherblanc,3 Matthew J. Fuchter,3* Wouter A. Herrebout,4,2 Ya-

Pei Lo,3 Henry S. Rzepa,3*, Giuliano Siligardi,5 Marko Weimar3 

 

1Department of Inorganic and Physical Chemistry Ghent University (UGent) Krijgslaan 281 

(S-3), 9000 Ghent, Belgium. 

2European Centre for Chirality; www.chiralitycentre.eu. 

3Department of Chemistry, Imperial College London South Kensington Campus, London SW7 

2AZ, UK. 

4Department of Chemistry, University of Antwerp Groenenborgerlaan 171, 2020 Antwerp, 

Belgium. 

5Diamond Light Source, Chilton, Oxon OX11 0QX, United Kingdom  

 

m.fuchter@imperial.ac.uk; rzepa@imperial.ac.uk 

 

Abstract 

Chiroptical spectroscopy, such as electronic circular dichroism (ECD) and vibrational circular 

dichroism (VCD) are highly sensitive techniques to probe molecular conformation, 

configuration, solvation and aggregation. Here we report the application of these techniques 

to study the fungal metabolite brevianamide B. Comparison of the experimental ECD and 

VCD spectra with the density functional theory (DFT) simulated counterparts establishes that 

VCD is the more reliable technique to assign absolute configuration due to the larger 

functional and dispersion dependence of computed ECD spectra. Despite a low amount of 

available material, and a relatively unusual example of using VCD carbonyl multiplets, the 

absolute configuration could be reliably predicted, strengthening the case for application of 
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VCD in the study of complex natural products. Spectral and crystallographic evidence for or 

against the formation of a dimeric aggregate is discussed; in solution the VCD spectra 

strongly suggest only monomeric species are present. 

 

Introduction 

Chiroptical spectroscopy uses refraction, absorption or emission of anisotropic radiation to 

probe the dissymmetry of a substance. Such spectroscopic techniques include optical rotation 

at a fixed wavelength, optical rotatory dispersion (ORD), and electronic circular dichroism 

(ECD), which are associated with electronic transitions,1 as well as the more recent 

techniques of vibrational circular dichroism (VCD) and Raman optical activity (ROA), which 

focus on vibrational transitions.2 Importantly, these techniques are powerful tools to elucidate 

molecular conformation, configuration, solvation and aggregation.3,4 We have recently 

reported the use of comparative chiroptical studies, comparing experimentally obtained 

spectra with theoretical simulations, to elucidate the stereochemistry of a desulfurized 

derivative of the fungal epipolythiodioxopiperazine (ETP) metabolite chaetocin.5 Driven by a 

mechanistic hypothesis, we also discovered stereochemical misassignments of a related ETP 

natural product analogue dethiodehydrogliotoxin,5 as well as a synthetic ETP analogue.6 

Before the advent of both experimental setups and computational tools for the more or less 

routine assignment of absolute configurations, it was common practice to use correlative 

methods to assign stereochemistry. This means that one assumed that similar chromophore 

frameworks would possess similar spectra. Especially in ECD this has been, and to some 

degree continues, to be a fairly standard approach. It is only relatively recently that 

computational power and new algorithms for the ab initio prediction of spectra have enabled 

suitably accurate quantum-chemical simulations of the chiroptical spectra of larger molecules 

to allow unambiguous comparison. In light of the questionable validity of the correlative 

methods7 used to assign the absolute stereochemistry of several diketopiperazines (such as 

dethiodehydrogliotoxin5,6), we undertook a study of other natural product frameworks bearing 

substituted diketopiperazines. 
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  The brevianamides comprise an interesting family of indole alkaloids.8 (+)-

Brevianamide A (1) was originally isolated from Penicillium brevicompactum in 1969,9 with 

further brevianamides later isolated.10 The structure and absolute stereochemistry of 

brevianamide A (1) was established using X-ray crystallography of a semi-synthetic 

brominated derivative.11 Determination of the structure and absolute stereochemistry of the 

minor metabolite brevianamide B (3), on the other hand, was more complex. The original 

structure was inferred from semi-synthetic reduction of brevianamide A (1) to 

deoxybrevianamide (2), followed by stereoselective oxidation to give (-)-brevianamide B (3, 

Scheme 1).10 This structure and the proposed absolute stereochemistry was later confirmed by 

Williams and co-workers using total synthesis.12 Curiously however, a chiroptical comparison 

revealed the naturally occurring (+)-brevianamide B (ent-3) to be the enantiomorph of the 

semi- or totally synthetic product 3 (Scheme 1).13 While such a result has fascinating 

implications from a biosynthetic standpoint, we decided to revisit the chiroptical spectra of 

brevianamides A and B to further our study of substituted diketopiperazine stereochemistry 

using such methods. This paper reports experimentally obtained and theoretically predicted 

ECD and VCD spectra for both the monomeric form of (-)-brevianamide B, as well as a 

hypothesized dimer. Not only does this study further highlight the value of chiroptical 

methods in probing molecular structure, it also represents a highly unusual example of using 

carbonyl stretch band features in VCD to study complex natural products.14 Moreover, as will 

be shown below, brevianamides A and B are excellent examples of the added value of VCD 

spectroscopy compared to ECD in terms of the calculation of theoretical spectra using DFT 

methods. 

  

 



 4 

 

Scheme 1 

 

 

Results and Discussion 

Since we have previously used highly sensitive chiroptical spectroscopy to probe the 

stereochemistry and structure of diketopiperazine natural products, 5,6 we decided to employ 

such techniques to study (-)-brevianamide B (3). It should be noted that comparative studies 

linking different experimental and simulated chiroptical spectra of such large molecular 

weight, complex natural products are still comparatively rare, hence the present chiroptical 

study of brevianamide B using ECD and VCD.  

ECD spectra have been previously reported for brevianamides A and B.13 These were 

recorded in trifluoroethanol (TFE) between 200 and 250nm, and in 2.5% formic 

acid/dichloromethane (DCM) between 250nm and 450nm. Although ECD spectra can be 

simulated using ab initio techniques including a solvent model, these mostly use a continuum 

representation and so any explicit hydrogen bonding, as may be expected for a protic co-

solvent, is not modeled. Indeed, explicit solvation remains a challenge especially for larger 

molecules where several (co-)solvent molecules would be required that may moreover be 

arranged in many different ways. Since our calculations (vide infra) do not account for 

explicit solvent interactions, we felt a comparison between the experimental formic 
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acid/DCM spectra and our computed spectra would be less appropriate. Therefore using the 

B23 circular dichroism beamline at the Diamond synchrotron facility, Synchrotron Radiation 

(SR)-ECD spectra of samples of brevianamide A (1) and semi-synthetic (-)-brevianamide B 

(3) could be obtained of, in case of semi-synthetic (-)-brevianamide B (3), a highly insoluble 

material. The use of synchrotron radiation makes it possible to measure ECD spectra at 

significantly lower concentrations due to the better signal to noise ratio. This is particularly 

important for brevianamide B due to its very low solubility in pure DCM (and in a range of 

organic solvents) as compared to the previously used DCM/formic acid solution. The 

measured ECD spectra of brevianamide A (1) and (-)-brevianamide B (3) in DCM are shown 

in Figure 1, along with a comparison of the ECD spectra of (-)-brevianamide B (3) in TFE 

and DCM.  
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Figure 1. Measured synchrotron radiation ECD (SR-ECD) spectra of brevianamide A and B: a) 

Comparison of (+)-brevianamide A (1) and (-)-brevianamide B (3) in DCM; b) Comparison of (-)-

brevianamide B in DCM and TFE. The SR-ECD spectra for all solutions were measured in the region 

below 280nm with a 1 mm path length and the 280-480nm region with a 10 mm pathlength. In both 

figures the spectra from 280 to 480 nm were normalised to 1 mm path length by dividing the data by 

10.  

 

 The obtained ECD spectra (Figure 1) in a single solvent system were in good 

agreement with those obtained previously.13 The mirrored ECD bands in the near-UV region 

(see insert, Figure 1a) are due to the spiroindoxil quaternary centre of R and S configurations 

for (+)-brevianamide A (1) and (-)-brevianamide B (3) respectively (see Scheme 1). 

Conversely, the ECD bands in the far-UV region are consistent with the rest of the 

brevianamide scaffold that has the same chiral configuration in both 1 and 3. Interestingly, it 

was correlative methods involving this latter ECD region, containing the diketopiperzine 

chromophore, that we previously found to have led to stereochemical misassignments for the 

epipolythiodioxopiperazine (ETP) class of natural products.5,6  

With suitable experimental ECD spectra in hand, comparative computational ECD 

simulations were carried out using Gaussian 09,15 employing density functional theory in its 

Kohn-Sham implementation. In previous studies on diketopiperazine scaffolds, we had 

surveyed a range of functionals and basis sets for such calculations,5 and had found that the 
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M062X6 functional generally gave the best predictions to allow comparison with 

experimentally obtained spectra. Our new calculations were modified from the original 

procedures5 to increase significantly the number of states computed for the time-dependent 

DFT, from 50-100 previously to 250. It is known16 that the 200-250nm region can be poorly 

converged in terms of bandshape if insufficient states are considered. The greater number of 

states also induces a ~four-fold increase in computation time, and in combination with the 

basis set, represents a practical upper limit to what can be simulated with current computer 

resources (64 processors, 90 Gbyte memory) for molecules of the size of 4. 

The simulated spectrum of brevianamide A (1) using the 6-311++G(d,p) basis set and 

the M062X functional gave reasonably good agreement with the experimental spectrum, 

correctly predicting the positive and negative features albeit with relative intensities that are 

not very well predicted  (Figure 2).  

 

Figure 2. Calculated spectrum of (+)-brevianamide A 1 with a continuum solvent field (SCRF) for 

DCM using M062X/6-311++G(d,p) . The calculated ECD curves were shifted by + 30 nm and 

convoluted with a line width 0.333 eV. The SR-ECD normalized experimental data (Figure 1), 

measured in DCM, is overlaid for comparison.  

 

When we repeated this procedure for brevianamide B, the match to experiment using this 

functional was far less good (as opposed to the good performance in previous cases of 
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system  (Figure 3), albeit with a change of continuum solvent to 2,2,2-trifluoroethanol (TFE) 

to allow comparison with the richer experimental data (Figure 1b). 

 

 

 

Figure 3. Calculated spectra of (-)-brevianamide B (3) with a continuum solvent field (SCRF) for TFE, 

using a range of functionals and the 6-311++G(d,p) basis set. The calculated ECD curves were 

unshifted and convoluted with a line width of 0.15 eV. The normalized SR-ECD experimental data 

(Figure 1), measured in TFE, are overlaid for comparison (black curve). Individual traces can be 

accessed via the spreadsheet provided with the Supporting Information. 

 

These simulations reveal that no uniform baseline shift (or linewidth) can be applied 

that would bring the entire spectral range into good agreement with the experimental data for 

any of these functionals, and we therefore decided against trying to apply any such 

corrections as an aid to our interpretations. Although the agreement with experiment for all 

these functionals might be good enough as evidence to assign the absolute configuration of 
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the species, the changes between the different spectra are significant. Moreover, we wished to 

explore whether more subtle features of this structure such as aggregation might be revealed 

by the ECD technique. For example, upon careful consideration of the three-dimensional 

structure of (-)-brevianamide B (3), we hypothesized that formation of a hydrogen-bonded 

brevianamide B dimer 4 may be possible (Figure 4).  We note that the stereochemistry of 

brevianamide A would prevent it from forming a comparable dimer. 

 

 

Figure 4. The computed geometry of a proposed C2-symmetric dimer (4) of (-)-brevianamide B using 

(a) B3LYP/6-311++G(d,p) with a continuum solvent field (SCRF) for TFE, and (b) with inclusion of 

D3 dispersion.17 Numerical values of bond lengths are in Å. Select heteroatoms have been numbered to 

facilitate inspection of these structures. Interactive models of these structures can be inspected in 

WEO1 in the HTML version of this article, and where links to the digital repository entries for each 

calculation can be found. 

 

The  hydrogen-bonding network shown Figure 4, and particularly the bifurcated form  

(Figure 4b) has ample precedent in the  Cambridge crystal database.18 There are 376 examples 
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containing such hydrogen bonds (shown as dashed lines in the figure) for which all four 

recorded lengths are <2.0Å (see the Supporting Information for individual examples). These 

have the potential of providing suitably strong interactions to ensure the proposed molecular 

dimer is retained in solution, although we do recognize that the range of concentrations and 

temperatures where ECD is usually recorded normally mitigate against dimer formation. A 

further note of caution was generated from the computed free energy ΔG298 of a monomer-

dimer (3:4) equilibrium in TFE favoring the monomer by 3.1 kcal/mol (M062X/6-

311++g(d,p)/SCRF=TFE) for a standard state of  0.041M. However, this difference is not so 

large as to definitively exclude the possibility of a significant concentration of dimer 4 in 

solution.  

 

Since the formation of a molecular dimer would be expected to be concentration 

dependent, with high concentrations favoring dimer formation, an ECD spectrum was 

recorded for brevianamide B (3) as a drop cast thin film; a highly concentrated condensed 

phase (Figure 5a). Sample rotation about the surface normal revealed that the observed ECD 

spectrum was not complicated by linear dichroism (LD) contributions. The thin film spectrum 

qualitatively corresponded to that obtained in dilute solution, albeit red shifted by about 7 nm. 

These data suggest that the molecular species in the drop cast film may be the same as in 

dilute solution. Concurrently, a temperature study was carried out where an ECD of (-)-

brevianamide B in TFE was taken at temperatures ranging from 5 to 65 oC. Should the 

monomer 3 and proposed dimer 4 be in equilibrium in solution, changes in temperature would 

be expected to perturb this equilibrium, resulting in different ECD spectra. Little or no change 

was observed in the ECD spectra upon increasing the temperature of the sample (Figure 5b). 

This suggests that a monomer-dimer equilibrium is not in operation and the molecular species 

observed is not sensitive to temperature. Taken together, this data supports a single molecular 

species in solution and in a condensed state and restricts us to consider either a pure monomer 

distribution or a pure dimer distribution.  
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Figure 5. a) Measured SR-ECD spectra of a brevianamide B thin film (evaporated from TFE) in two 

perpendicular orientations (g and b) normal to the surface. Normalized solution spectrum included for 

comparison. b) Measured SR-ECD spectra of (-)-brevianamide B in TFE at different temperatures. The 

SR-ECD spectra for all solutions were measured in the region below 280nm with a 1 mm path length 

and the 280-480nm region with a 10 mm pathlength. In both figures the spectra from 280 to 480 nm 

were normalised to 1 mm path length by dividing the data by 10.  
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At this stage, we decided to evaluate whether an ECD simulation could provide more 

information about this aspect by asking whether the dimer simulation is perturbed from that 

of the monomer. There are two broad classes of DFT functionals as listed in Figure 3, those 

where no default correction for dispersion terms is included in the functional (B3LYP, 

B3PW91, CAM-B3LYP) and a second class where such a correction is included 

(SOGGA11X, M062X, MN12L, ωB97X, ωB97X-D). The optimized geometries for each 

class differ significantly, suggesting that dispersion has a significant effect on the final 

structures. The effect is best illustrated by comparing the computed geometry using the 

B3LYP functional to that obtained when Grimme’s D3 functional is added (Figure 4).17 The 

B3LYP geometry obtained with the D3-correction now closely matches those obtained from 

the dispersion-included functionals. The dispersion-corrected predicted dimer structures 

reveal bifurcation of the hydrogen bonds to the carbonyl groups, and a much closer approach 

of the alkyl groups, as indeed is supported by the crystallographic evidence noted above.  

 

These geometric effects propagate to the predicted ECD dimer spectra (Figure 6a,b), which 

reveal that for the functionals without dispersion correction, the effect of dimer formation is 

reflected only in the intensities of the responses and not their frequencies. We caution against 

the use of functionals such as the commonly used CAM-B3LYP for exploring the specific 

property of dimer formation unless they are corrected for dispersion.  In contrast, simulated 

spectra for the dimer containing bifurcated hydrogen bonds (from dispersion-corrected 

functionals) additionally show a red shift, ranging from ~9nm (M062X), ~15nm (ωB97XD) 

to ~40nm (MN12L) for the lowest energy transitions (Figure 6c,d). It became clear, however, 

that the variation in the differing functional predictions was still large enough to mask any 

effects due to any possible aggregation of 3. There was also a small shift in the 230nm region 

between the two possible conformations for the terminal 5-ring present in 3 (see experimental 

section) which adds further noise to any interpretation. Concentrating on a single functional to 

try to achieve some cancellation of errors, we turned to a more direct comparison with the 
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experimental data. Figure 7 shows the ECD spectra simulated using just the MN12L 

functional for both solution/gas phase and for monomer/dimer. The experimental data (Figure 

5a) shows a red shift of ~7nm in the 230nm region when changing from TFE solution to a 

solid-state measurement. The MN12L calculations (Figure 7) show a blue shift for the 

~230nm excitation (+ve Cotton effect) for monomer solution (233nm) compared with 

monomer gas phase (223nm), but a smaller blue shift compared with dimer gas phase 

(229nm). Given that the 230nm region is also where small (~5nm) variations due to the 

conformation adopted by the terminal 5-ring occur, we consider the evidence for dimer 

formation in the solid state at best is tenuous, and that for aggregation in solution is even 

weaker. To seek more conclusive evidence for any possible aggregation of 3 in solution, we 

turned to vibrational circular dichroism or VCD, an alternative chiroptical technique. 
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Figure 6. Calculated ECD spectra of (-)-brevianamide B with a continuum solvent field (SCRF/TFE) 

for both monomer 3 and dimer 4 using the 6-311++G(d,p) basis set and the functionals (a) B3LYP, (b) 

CAM-B3LYP, (c) M052X, (d) MN12L. The calculated ECD curves were unshifted and convoluted 

with a line width of 0.15 eV. The normalized experimental data (Figure 1), measured in TFE, are 

overlaid for comparison (black curve). Individual traces can be accessed via the spreadsheet provided 

for this figure with the Supporting Information. 

 

 

Figure 7. Calculated ECD spectra of (-)-brevianamide B for both monomer 3 and dimer 4 using the 6-

311++G(d,p) basis and the MN12L functional, for both  gas phase and  TFE solution. The calculated 

ECD curves were unshifted and convoluted with a line width of 0.15 eV.  

 

The use of VCD to study the dimerization of molecules in solution is relatively well known 

for carboxylic acids19 and we note that the bifurcated H-bonded motif shown in Figure 4 for 4 

is actually structurally closely related. We therefore assessed the VCD method for both its 

functional dependence of the monomer spectra and to evaluate the possibility of carboxylic-

like dimerization. In case of carboxylic acids, the effects of dimerization are usually observed 

in the CO stretch region. By the study of the changes in spectrum upon changing the 
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concentration of the acids involved, it is possible to determine the stability of such dimers. To 

shed more light on the results obtained with ECD, we set out to obtain a VCD spectrum of 

our brevianamide B sample in solution. VCD has the advantage of being based on vibrational 

transitions, of which there are potentially many more resolvable electronic transitions. The 

resulting spectra are therefore potentially richer in information. However, recording the 

required VCD spectrum was technically challenging. The low quantities of material we had 

access to (<1 mg), the low solubility of brevianamide B and the low intensity of VCD modes 

of absorption limited the utility of conventional VCD methods. The solubility in 

trifluoroethanol was sufficient to allow a specific robust carbonyl stretch feature in the VCD 

spectrum to be used, although this unfortunately prevented the use of the OH stretching 

region. All other bands are much weaker and were not observed. 

 

The experimental IR and VCD spectra for brevianamide B dissolved in TFE-d3 are 

shown in Figures 8a and 8b. The calculated IR and VCD spectra for monomer and dimer are 

given in Figures 8c-f, respectively. In the experimental IR spectra, a broad, intense feature 

and a weaker shoulder is observed near 1675 cm-1 and 1620 cm-1. Based on visual inspection 

of the normal modes involved, the former is assigned to combinations of the three C=O 

stretching modes which in the monomer are predicted to occur near 1774, 1767 and 1756 cm-

1. The latter are assigned to two nearly degenerate skeletal deformations in the indoxil 

substructure. Despite the low sample concentration, and the fact that the intensity of the 

carbonyl stretching modes in the IR hardly exceeds 0.15 absorbance units, a split-type 

bisignate CD signal is observed in the VCD spectrum. The exact nature of this CD signal 

observed is directly related to the mixing of the C=O stretching modes in the different 

carbonyl IR chromophores present. Comparison of calculated and experimental VCD data, 

however, should enable analysis of the absolute configuration of the sample and also be able 

to discriminate between monomer 3 and dimer 4.  
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Figure 8. IR and VCD spectra of (-)-brevianamide B. Panels A and B show the experimental IR and 

VCD spectra for brevianamide B obtained for a solution in TFE-d3 over the range 1550-1800 cm-1. 

Panels C and D show the calculated IR and VCD spectra obtained at the MN12L/6-311++G(d,p) 

scrf(cpcm, solvent=TFE) level for the monomer 3 Panels E and F show the calculated IR and VCD 

spectra obtained at MN12L/6-311++G(d,p) scrf(cpcm, solvent=TFE) for the dimer 4. The theoretical 

spectra were obtained by using a scale factor of 0.960.   

 

Figure 8 reveals that in solution, the monomer simulation using the MN12L 

functional fits experiment qualitatively better than that of the dimer. At the suggestion of a 

referee that we might still be confronted with a fortuitously good agreement for the functional 

chosen and in light of the sensitivity of the simulated ECD data to the functional employed, 

we surveyed a range of functionals for VCD prediction in the carbonyl stretching region for 

both the monomer 3 (Figure 9) and dimer 4 of brevianamide B (Figure 10).  
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Figure 9. VCD spectra for the monomer 3 obtained for a range of functionals using and 6-

311++G(d,p) scrf(cpcm, solvent=TFE) over the region 1550-1800 cm-1. Individual traces can be 

accessed via the spreadsheet provided for this figure with the Supporting Information. 

 

Figure 10. VCD spectra for the dimer 4 obtained for a range of functionals using and 6-311++G(d,p) 

scrf(cpcm, solvent=TFE) over the region 1550-1800 cm-1. Individual traces can be accessed via the 

spreadsheet provided for this figure with the Supporting Information. 
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The negative and positive observed Cotton effects for the high and low wavenumber 

components of the bisignate CD carbonyl stretching signal are reproduced by all functionals 

considered for the monomer simulation (Figure 9). Likewise, all tested methods predict more 

complex but essentially inverse Cotton effect behaviour for this signal for the dimer 4 (Figure 

10). The uniformity of the Cotton effect behaviour over all functionals establishes the 

robustness of the carbonyl stretch region. Thus we can unambiguously conclude from the 

comparison of the experimental VCD spectrum with the predicted ones that the monomeric 

species 3 in TFE solution is the predominant molecular form in dilute solution. More 

generally, because of the large functional dependence of ECD spectra and the more robust 

nature of VCD spectra over the range of different functionals used, we recommend that VCD 

is a better technique for also establishing the absolute configuration of such molecules. Our 

work supports the absolute stereochemical assignment of this compound, originally 

established using total synthesis.12 

 

Conclusions. We have generated high quality ECD and VCD data to enable a chiroptical 

study on brevianamide B (3). We have found the simulation of brevianamide B ECD data to 

be subtly dependent on the functional employed. The relatively poor agreement between the 

experimental and simulated data using the M062X functional led us to investigate the 

suggestion of a hydrogen-bonded molecular dimer. Through free energy calculations, ECD 

simulations with the MN12L functional, and particularly, comparative VCD studies, 

ultimately this hypothesis proved incorrect; the solution chiroptical spectra obtained 

representing a single monomeric species. VCD is found to be a more reliable technique in the 

sense that the computationally obtained reference spectra are more robust, depending 

significantly less on the details of the calculations than is the case for ECD spectra. 

 

It remains to be determined as to whether our proposed dimeric structure for brevianamide B 

(4, Figure 4b) would be observed in the solid state. Although an X-ray crystallographic 

structure of a brevianamide B analogue has been solved, 8a the crystallized analogue bears a 
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para-methoxybenzyl group on the diketopiperazine nitrogen atom (‘N3’ in Figure 4) that 

would disrupt the proposed hydrogen bond network. We note that there is ample precedence 

from 376 other known crystal structures of the bifurcated hydrogen bonding network in our 

dimer model. It is perhaps telling that, unlike brevianamide A, brevianamide B is extremely 

insoluble in the majority of solvents examined, as also noted by Birch and co-workers in their 

original isolation study.10b  

 

Experimental Section.  

 

General 

The sample of brevianamide B employed was prepared from (+)-brevianamide A (see 

Scheme 1) using previously reported methods.10 

 

Computational procedures:  

Conformation: all the rings present in 3 are conformationally locked except for the terminal 5-

ring, which has two possible conformations which have a predicted Boltzmann population 

ranging from ~69:31% in favour of conformer 3(1), to a more equal population depending on 

functional and basis set used. Conformation 3(1) was used for the simulations reported here, 

since the differences predicted for conformation 3(2) are small and localized, as noted below. 

Electronic Circular Dichroism: time-dependent density functional (TDDFT) calculations 

using the basis sets and functionals stated with a continuum solvent model for up to 250 states 

were used to simulate the electronic circular dichroism spectra. Comparison of ECD spectra 

for the conformational form 3(1) and 3(2) indicates the only perceptible differences are a 

~5nm blue shift for 2 in the region of 230nm and some small intensity differences. Some 

functional combinations (e.g. B3LYP+D3) did not converge even for 150 states for the dimer 

species, and are therefore not included in the comparisons. Vibrational circular dichroism: 

spectra were also computed using the basis sets and functionals stated with a continuum 

solvent model using the standard methods implemented in Gaussian 09, with the addition of 
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the keyword integral=(acc2e=12,grid=ultrafine) required to ensure convergence of the 1st 

order CPHF calculation. Only small VCD intensity differences between conformation 3(2) 

and (3)2 were detected in the 1600-1800 cm-1 window selected; the phases of the Cotton 

effects for these signals were the same for both conformations. Further details can be found in 

the SI,  as can all the input parameters and resulting outputs from the calculations via the 

Web-enhanced-object (WEO1), and links therein to the digital repository entries for each 

calculation. 

Chiroptical measurements: ECD spectroscopy: The experimental ECD spectra were 

recorded using the synchrotron CD beamline at the Diamond Light Source, UK. VCD 

measurements: experimental IR and VCD spectra were measured at the European Centre for 

Chirality (EC2) in Belgium on a BioTools ChiralIR-2X instrument using a solution of (-)-

brevianamide B TFE-d3. All spectra were recorded using a demountable liquid cell equipped 

with BaF2 windows and 100 µm spacers. All spectra were recorded at 4 cm-1 resolution for 

approximately 13 h, accumulating 40 000 scans. The spectra shown were obtained using a 

solution of 1.2 mg of brevianamide B dissolved in 0.135 mL TFE-d3. Background corrections 

for VCD were introduced by subtracting the spectrum obtained for pure TFE-d3. 
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Supporting Information. 

Supporting Information: Simulated ECD and VCD spectra are available in spreadsheet form 

(.xlsx) for Figures 3,6,7,9,10. A selection of measured crystal structures bearing the 

intermolecular bifurcated hydrogen bond motif revealed in Figure 4b is available as a multi-

structure CIF file. The UV-vis spectra of brevianamide A and B. This material is available 

free of charge via the Internet at http://pubs.acs.org/. 
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