23 research outputs found

    Recent developments in the genetics of childhood epileptic encephalopathies: impact in clinical practice

    Full text link

    A Solve-RD ClinVar-based reanalysis of 1522 index cases from ERN-ITHACA reveals common pitfalls and misinterpretations in exome sequencing

    Get PDF
    Purpose Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could establish additional diagnoses. We present the results of the “ClinVar low-hanging fruit” reanalysis, reasons for the failure of previous analyses, and lessons learned. Methods Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and reinterpreted. Results We identified causal variants in 59 cases (3.9%), 50 of them also raised by other approaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in genes not known to be involved in human disease at the time of the first analysis, misleading genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality filters, low allelic balance, or high frequency). Conclusion The “ClinVar low-hanging fruit” analysis represents an effective, fast, and easy approach to recover causal variants from exome sequencing data, herewith contributing to the reduction of the diagnostic deadlock

    Intrafamilial segregation analysis of the p.E148Q MEFV allele in familial Mediterranean fever

    No full text
    BACKGROUND: Familial Mediterranean fever (FMF) is the most frequent of the recurrent inherited fevers. This autosomal recessive disorder is characterised by periodic episodes of fever and serositis that commonly affect the people of Arab, Armenian, Sephardic Jewish and Turkish origin. Most of the described MEFV gene anomalies responsible for the disease are missense mutations. In the absence of any functional test, epidemiological studies or pedigree analyses are the only means of proving the deleterious character of these sequence variations. Evidence was provided by our recent study using a population‐based approach, that the p.E148Q allele is probably a benign polymorphism and not a disease‐causing mutation. Its implication in FMF remains, however, controversial. OBJECTIVE: To evaluate the segregation of the p.E148Q MEFV allele with FMF disease by using pedigree analysis. PARTICIPANTS: 21 patients and 48 unaffected relatives belonging to 18 independent families with FMF. RESULTS: Segregation analysis of the p.E148Q allele was compatible with a Mendelian autosomal recessive transmission of the disease phenotype in only three families. In 15 of 18 families, segregation was partly or completely defective. The p.E148Q allele was not transmitted to 14 of 19 (74%) affected children. CONCLUSIONS: No evidence of preferential transmission of p.E148Q from heterozygous parents to their affected offspring was observed. MEFV is not associated with the clinical manifestations of several patients carrying this variant. Considering p.E148Q to be a benign polymorphism should reduce the possibility of false‐positive diagnoses, while highlighting genetic heterogeneity in FMF

    High-functioning autism spectrum disorder and fragile X syndrome: report of two affected sisters.

    Get PDF
    International audienceABSTRACT: BACKGROUND: Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability (ID), as well as the most frequent monogenic cause of autism spectrum disorder (ASD). Men with FXS exhibit ID, often associated with autistics features, whereas women heterozygous for the full mutation are typically less severely affected; about half have a normal or borderline intelligence quotient (IQ). Previous findings have shown a strong association between ID and ASD in both men and women with FXS. We describe here the case of two sisters with ASD and FXS but without ID. One of the sisters presented with high-functioning autism, the other one with pervasive developmental disorder not otherwise specified and low normal IQ. METHODS: The methylation status of the mutated FMR1 alleles was examined by Southern blot and methylation-sensitive polymerase chain reaction. The X-chromosome inactivation was determined by analyzing the methylation status of the androgen receptor at Xq12. RESULTS: We present the phenotype of the two sisters and other family members. Both sisters carried a full mutation in the FMR1 gene, with complete methylation and random X chromosome inactivation. CONCLUSIONS: These findings suggest that autistic behaviors and cognitive impairment can manifest as independent traits in FXS. Mutations in FMR1, known to cause syndromic autism, may also contribute to the etiology of high-functioning, non-syndromic ASD, particularly in women. Thus, screening for FXS in patients with ASD should not be limited to those with comorbid ID

    2q23.1 microdeletion identified by array comparative genomic hybridisation: an emerging phenotype with Angelman-like features?

    Get PDF
    International audienceBACKGROUND: Genome-wide screening of patients with mental retardation using array comparative genomic hybridisation (CGH) has identified several novel imbalances. With this genotype-first approach, the 2q22.3q23.3 deletion was recently described as a novel microdeletion syndrome. The authors report two unrelated patients with a de novo interstitial deletion mapping in this genomic region and presenting similar "pseudo-Angelman" phenotypes, including severe psychomotor retardation, speech impairment, epilepsy, microcephaly, ataxia, and behavioural disabilities. METHODS: The microdeletions were identified by array CGH using oligonucleotide and bacterial artificial chromosome (BAC) arrays, and further confirmed by fluorescence in situ hybridisation (FISH) and semi-quantitative polymerase chain reaction (PCR). RESULTS: The boundaries and sizes of the deletions in the two patients were different but an overlapping region of about 250 kb was defined, which mapped to 2q23.1 and included two genes: MBD5 and EPC2. The SIP1 gene associated with the Mowat-Wilson syndrome was not included in the deleted genomic region. DISCUSSION: Haploinsufficiency of one of the deleted genes (MBD5 or EPC2) could be responsible for the common clinical features observed in the 2q23.1 microdeletion syndrome, and this hypothesis needs further investigation

    Bilateral periventricular heterotopias in an X-linked dominant transmission in a family with two affected males

    No full text
    International audienceWe report on the case of dizygotic twin boys, born prematurely to an asymptomatic mother. Bilateral periventricular heterotopias with enlarged ventricles were discovered at birth in both twins. One of the twins died prematurely of bronchopulmonary complications, and was shown to have several neuropathological anomalies (microgyria, thin corpus callosum, and reduced white matter). The surviving twin had mental retardation, without epilepsy. MRI of the mother showed asymptomatic periventricular heterotopias without ventricular enlargement. She had two affected daughters also with asymptomatic periventricular heterotopias. A point mutation in the last coding exon 48 of the Filamin A (FLNA) gene (7922c > t) was discovered on sequencing and segregated with the affected individuals. This family has a classical X-linked dominant BPNH pathology, with greater severity in males than females. The location of the FLNA mutation is discussed in light of the neuropathological anomalies and mental retardation in male patients
    corecore