4 research outputs found

    Timescales from magma mixing to eruption in alkaline volcanism in the Eifel volcanic fields, western Germany

    No full text
    Diffusion profiles in olivine crystals from the final mafic eruption products of the compositionally zoned Laacher See tephra deposit were measured to identify recharge and eruption-triggering events prior to the eruption of the Laacher See volcano (12.9 kyr). These products represent the hybrids of mixing between phonolite and intruding basanite at the bottom of the reservoir, which is likely related to the eruption-triggering event. Additionally, olivine crystals from ten basanitic scoria cones and maar deposits (East Eifel) and two nephelinites (West Eifel) were analyzed to constrain histories of olivine in Quaternary basanite magmas. Olivine crystals from the Laacher See hybrids vary in core composition (Fo83–89) and show reversely zoned mantles with high Fo87.8–89 compared to olivine in East Eifel basanites erupted in nearby, older scoria cones. Towards the crystal margin, olivine in the hybrids develop a normally zoned overgrowth (Fo86.5–87.5). Olivine from East Eifel basanites show similar zonation and core compositions (Fo80–88) but have less forsteritic mantles (Fo83–88) indicating that these basanites are less primitive than those recharging the Laacher See reservoir (> Fo89). Olivine in the West Eifel nephelinites show mantles similar to those from Laacher See (Fo87.5–90), but have normal zoning and high-Fo cores (Fo88–92). This indicates that olivine in the Laacher See hybrids were entrained by a near-primary basanite from older cumulates just before hybridization of the basanite with the phonolite. Diffusion modeling indicates maximum timescales between entrainment and eruption of Laacher See of 30–400 days that are comparable to those calculated for olivine from basanitic scoria cones (10–400 days)

    Timescales from magma mixing to eruption in alkaline volcanism in the Eifel volcanic fields, western Germany

    No full text
    <jats:title>Abstract</jats:title><jats:p>Diffusion profiles in olivine crystals from the final mafic eruption products of the compositionally zoned Laacher See tephra deposit were measured to identify recharge and eruption-triggering events prior to the eruption of the Laacher See volcano (12.9 kyr). These products represent the hybrids of mixing between phonolite and intruding basanite at the bottom of the reservoir, which is likely related to the eruption-triggering event. Additionally, olivine crystals from ten basanitic scoria cones and maar deposits (East Eifel) and two nephelinites (West Eifel) were analyzed to constrain histories of olivine in Quaternary basanite magmas. Olivine crystals from the Laacher See hybrids vary in core composition (Fo<jats:sub>83–89</jats:sub>) and show reversely zoned mantles with high Fo<jats:sub>87.8–89</jats:sub> compared to olivine in East Eifel basanites erupted in nearby, older scoria cones. Towards the crystal margin, olivine in the hybrids develop a normally zoned overgrowth (Fo<jats:sub>86.5–87.5</jats:sub>). Olivine from East Eifel basanites show similar zonation and core compositions (Fo<jats:sub>80–88</jats:sub>) but have less forsteritic mantles (Fo<jats:sub>83–88</jats:sub>) indicating that these basanites are less primitive than those recharging the Laacher See reservoir (> Fo<jats:sub>89</jats:sub>). Olivine in the West Eifel nephelinites show mantles similar to those from Laacher See (Fo<jats:sub>87.5–90</jats:sub>), but have normal zoning and high-Fo cores (Fo<jats:sub>88–92</jats:sub>). This indicates that olivine in the Laacher See hybrids were entrained by a near-primary basanite from older cumulates just before hybridization of the basanite with the phonolite. Diffusion modeling indicates maximum timescales between entrainment and eruption of Laacher See of 30–400 days that are comparable to those calculated for olivine from basanitic scoria cones (10–400 days).</jats:p&gt

    Unravelling the pre-eruptive conditions of the rhyolitic Ĺ umovit Greben lava dome from clinopyroxene-dominant glomeroporphyritic clots

    No full text
    Detailed analyses of mineral composition and whole-rock geochemical data helped to unravel the volcanic plumbing system beneath the rhyolitic Šumovit Greben lava dome, the westernmost member of the Kožuf-Voras volcanic system (N. Macedonia). It is characterized by high SiO 2 content (> 70 wt%) coupled with low MgO (< 1 wt%) and Sr (< 500 ppm) suggesting fractionation of clinopyroxene and plagioclase at depth forming a crystal mush and a crystal-poor rhyolitic lens by fractional crystallization and melt extraction on top of it. The crystal mush is composed of mainly clinopyroxene, biotite and plagioclase, whereas sanidine and plagioclase are the most abundant phenocrysts of the rhyolitic lens. The main dome forming event occurred at ca. 2.9 Ma, which sampled the crystal-poor rhyolitic lens. After a short quiescence time, an explosive eruption occurred depositing a massive lapilli tuff layer northwest of the lava dome, and an extrusion of a smallvolume lava flow on the northern side of the lava dome at ca. 2.8 Ma. This latter sampled also the crystal mush, as it contains abundant glomeroporphyritic clots of clinopyroxene ± plagioclase ± biotite. The clinopyroxene phenocrysts are chemically homogeneous, their crystallization temperature is ca. 900 °C representing the crystal mush, whereas the plagioclase and the sanidine crystallized at a lower temperature (ca. 790 °C) representing the rhyolitic lens. Noble gas isotopic composition of the clinopyroxene indicate no mantle-derived fluids (< 0.5%) having an R/R a of ca. 0.04 R a. The rejuvenation of the system probably occurred due to implementation of mafic magma at depth leading to a heat transfer and partial melting of the cumulate. This led to crystallization of Ba-rich rims of the sanidine and An-and Sr-rich rims of the plagioclase. The crystal mush zone beneath Šumovit Greben might be connected to the nearby, more mafic volcanic centers, and the eruption of Šumovit Greben could have been the start of the last cycle in the lifetime of the Kožuf-Voras volcanic system. Keywords Rhyolite • Clinopyroxene • Noble gases • Volcanic plumbing system • Sanidine Ar/Ar dating Communicated by Timothy L. Grove
    corecore