1,847 research outputs found

    Micropatterned Electrostatic Traps for Indirect Excitons in Coupled GaAs Quantum Wells

    Full text link
    We demonstrate an electrostatic trap for indirect excitons in a field-effect structure based on coupled GaAs quantum wells. Within the plane of a double quantum well indirect excitons are trapped at the perimeter of a SiO2 area sandwiched between the surface of the GaAs heterostructure and a semitransparent metallic top gate. The trapping mechanism is well explained by a combination of the quantum confined Stark effect and local field enhancement. We find the one-dimensional trapping potentials in the quantum well plane to be nearly harmonic with high spring constants exceeding 10 keV/cm^2.Comment: 21 pages, 6 figures, submitted to Phys. Rev.

    Violator Spaces: Structure and Algorithms

    Get PDF
    Sharir and Welzl introduced an abstract framework for optimization problems, called LP-type problems or also generalized linear programming problems, which proved useful in algorithm design. We define a new, and as we believe, simpler and more natural framework: violator spaces, which constitute a proper generalization of LP-type problems. We show that Clarkson's randomized algorithms for low-dimensional linear programming work in the context of violator spaces. For example, in this way we obtain the fastest known algorithm for the P-matrix generalized linear complementarity problem with a constant number of blocks. We also give two new characterizations of LP-type problems: they are equivalent to acyclic violator spaces, as well as to concrete LP-type problems (informally, the constraints in a concrete LP-type problem are subsets of a linearly ordered ground set, and the value of a set of constraints is the minimum of its intersection).Comment: 28 pages, 5 figures, extended abstract was presented at ESA 2006; author spelling fixe

    A system for production of defective interfering particles in the absence of infectious influenza A virus

    No full text
    <div><p>Influenza A virus (IAV) infection poses a serious health threat and novel antiviral strategies are needed. Defective interfering particles (DIPs) can be generated in IAV infected cells due to errors of the viral polymerase and may suppress spread of wild type (wt) virus. The antiviral activity of DIPs is exerted by a DI genomic RNA segment that usually contains a large deletion and suppresses amplification of wt segments, potentially by competing for cellular and viral resources. DI-244 is a naturally occurring prototypic segment 1-derived DI RNA in which most of the PB2 open reading frame has been deleted and which is currently developed for antiviral therapy. At present, coinfection with wt virus is required for production of DI-244 particles which raises concerns regarding biosafety and may complicate interpretation of research results. Here, we show that cocultures of 293T and MDCK cell lines stably expressing codon optimized PB2 allow production of DI-244 particles solely from plasmids and in the absence of helper virus. Moreover, we demonstrate that infectivity of these particles can be quantified using MDCK-PB2 cells. Finally, we report that the DI-244 particles produced in this novel system exert potent antiviral activity against H1N1 and H3N2 IAV but not against the unrelated vesicular stomatitis virus. This is the first report of DIP production in the absence of infectious IAV and may spur efforts to develop DIPs for antiviral therapy.</p></div

    Regulation of cargo transfer between ESCRT-0 and ESCRT-I complexes by flotillin-1 during endosomal sorting of ubiquitinated cargo

    Get PDF
    Ubiquitin-dependent sorting of membrane proteins in endosomes directs them to lysosomal degradation. In the case of receptors such as the epidermal growth factor receptor (EGFR), lysosomal degradation is important for the regulation of downstream signalling. Ubiquitinated proteins are recognised in endosomes by the endosomal sorting complexes required for transport (ESCRT) complexes, which sequentially interact with the ubiquitinated cargo. Although the role of each ESCRT complex in sorting is well established, it is not clear how the cargo is passed on from one ESCRT to the next. We here show that flotillin-1 is required for EGFR degradation, and that it interacts with the subunits of ESCRT-0 and -I complexes (hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) and Tsg101). Flotillin-1 is required for cargo recognition and sorting by ESCRT-0/Hrs and for its interaction with Tsg101. In addition, flotillin-1 is also required for the sorting of human immunodeficiency virus 1 Gag polyprotein, which mimics ESCRT-0 complex during viral assembly. We propose that flotillin-1 functions in cargo transfer between ESCRT-0 and -I complexes

    Generalized Shortest Path Kernel on Graphs

    Full text link
    We consider the problem of classifying graphs using graph kernels. We define a new graph kernel, called the generalized shortest path kernel, based on the number and length of shortest paths between nodes. For our example classification problem, we consider the task of classifying random graphs from two well-known families, by the number of clusters they contain. We verify empirically that the generalized shortest path kernel outperforms the original shortest path kernel on a number of datasets. We give a theoretical analysis for explaining our experimental results. In particular, we estimate distributions of the expected feature vectors for the shortest path kernel and the generalized shortest path kernel, and we show some evidence explaining why our graph kernel outperforms the shortest path kernel for our graph classification problem.Comment: Short version presented at Discovery Science 2015 in Banf

    Extending local features with contextual information in graph kernels

    Full text link
    Graph kernels are usually defined in terms of simpler kernels over local substructures of the original graphs. Different kernels consider different types of substructures. However, in some cases they have similar predictive performances, probably because the substructures can be interpreted as approximations of the subgraphs they induce. In this paper, we propose to associate to each feature a piece of information about the context in which the feature appears in the graph. A substructure appearing in two different graphs will match only if it appears with the same context in both graphs. We propose a kernel based on this idea that considers trees as substructures, and where the contexts are features too. The kernel is inspired from the framework in [6], even if it is not part of it. We give an efficient algorithm for computing the kernel and show promising results on real-world graph classification datasets.Comment: To appear in ICONIP 201

    Photophysics of Structurally Modified Flavin Derivatives in the Blue-Light Photoreceptor YtvA: A Combined Experimental and Theoretical Study

    No full text
    The light-induced processes of two flavin mononucleotide derivatives (1- and 5-deaza flavin mononucleotide, 1DFMN and 5DFMN), incorporated into the LOV domain of YtvA protein from Bacillus subtilis, were studied by a combination of experimental and computational methods. Quantum mechanics/molecular mechanics (QM/MM) calculations were carried out in which the QM part was treated by density functional theory (DFT) using the B3LYP functional for geometry optimizations and the DFT/MRCI method for spectroscopic properties, whereas the MM part was described by the CHARMM force field. 1DFMN is incorporated into the protein binding site, yielding a red-shifted absorption band (lmax=530 nm compared to YtvA wild-type lmax=445 nm), but does not undergo any LOV-typical photoreactions such as triplet and photoadduct formation. QM/MM computations confirmed the absence of a channel for triplet formation and located a radiation-free channel (through an S1/S0 conical intersection) along a hydrogen transfer path that might allow for fast deactivation. By contrast, 5DFMN-YtvA-LOV shows a blue-shifted absorption (lmax=410 nm) and undergoes similar photochemical processes to FMN in the wild-type protein, both with regard to the photophysics and the formation of a photoadduct with a flavin-cysteinyl covalent bond. The QM/MM calculations predict a mechanism that involves hydrogen transfer in the T1 state, followed by intersystem crossing and adduct formation in the S0 state for the forward reaction. Experimentally, in contrast to wild-type YtvA, dark-state recovery in 5DFMN-YtvALOV is not thermally driven but can only be accomplished after absorption of a second photon by the photoadduct, again via the triplet state. The QM/MM calculations suggest a photochemical mechanism for dark-state recovery that is accessible only for the adduct with a C4a–S bond but not for alternative adducts with a C5–S bond

    Space-efficient Feature Maps for String Alignment Kernels

    Get PDF
    String kernels are attractive data analysis tools for analyzing string data. Among them, alignment kernels are known for their high prediction accuracies in string classifications when tested in combination with SVM in various applications. However, alignment kernels have a crucial drawback in that they scale poorly due to their quadratic computation complexity in the number of input strings, which limits large-scale applications in practice. We address this need by presenting the first approximation for string alignment kernels, which we call space-efficient feature maps for edit distance with moves (SFMEDM), by leveraging a metric embedding named edit sensitive parsing (ESP) and feature maps (FMs) of random Fourier features (RFFs) for large-scale string analyses. The original FMs for RFFs consume a huge amount of memory proportional to the dimension d of input vectors and the dimension D of output vectors, which prohibits its large-scale applications. We present novel space-efficient feature maps (SFMs) of RFFs for a space reduction from O(dD) of the original FMs to O(d) of SFMs with a theoretical guarantee with respect to concentration bounds. We experimentally test SFMEDM on its ability to learn SVM for large-scale string classifications with various massive string data, and we demonstrate the superior performance of SFMEDM with respect to prediction accuracy, scalability and computation efficiency.Comment: Full version for ICDM'19 pape
    • …
    corecore