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Abstract—String kernels are attractive data analysis tools for
analyzing string data. Among them, alignment kernels are known
for their high prediction accuracies in string classifications when
tested in combination with SVM in various applications. However,
alignment kernels have a crucial drawback in that they scale
poorly due to their quadratic computation complexity in the
number of input strings, which limits large-scale applications
in practice. We address this need by presenting the first ap-
proximation for string alignment kernels, which we call space-
efficient feature maps for edit distance with moves (SFMEDM), by
leveraging a metric embedding named edit sensitive parsing (ESP)
and feature maps (FMs) of random Fourier features (RFFs) for
large-scale string analyses. The original FMs for RFFs consume
a huge amount of memory proportional to the dimension d of
input vectors and the dimension D of output vectors, which
prohibits its large-scale applications. We present novel space-
efficient feature maps (SFMs) of RFFs for a space reduction
from O(dD) of the original FMs to O(d) of SFMs with a
theoretical guarantee with respect to concentration bounds. We
experimentally test SFMEDM on its ability to learn SVM for
large-scale string classifications with various massive string data,
and we demonstrate the superior performance of SFMEDM
with respect to prediction accuracy, scalability and computation
efficiency.

Index Terms—Feature maps, kernel approximation, string
alignment kernels

I. INTRODUCTION

Massive string data are now ubiquitous throughout re-

search and industry, in areas such as biology, chemistry,

natural language processing and data science. For example, e-

commerce companies face a serious problem in analyzing huge

datasets of user reviews, question answers and purchasing

histories [11], [22]. In biology, homology detection from huge

collections of protein and DNA sequences is an important part

for their functional analyses [25]. There is therefore a strong

need to develop powerful methods to make best use of massive

string data on a large-scale.

Kernel methods [12] are attractive data analysis tools be-

cause they can approximate any (possibly non-linear) function

or decision boundary well with enough training data. In kernel

methods, a kernel matrix a.k.a. Gram matrix is computed from

training data and non-linear support vector machines (SVM)

are trained on the matrix. Although it is known that kernel

methods achieve high prediction accuracy for various tasks

such as classification and regression, they scale poorly due

to a quadratic complexity in the number of training data [9],

[13]. In addition, calculation of a classification requires, in the

worst case, linear time in the number of training data, which

limits large-scale applications of kernel methods in practice.

String kernels [10] are kernel functions that operate on

strings, and a variety of string kernels using string similarity

measures have been proposed [5], [17], [20], [25]. As state-

of-the-art string kernels, string alignment kernels are known

for high prediction accuracy in string classifications, such as

remote homology detection for protein sequences [25] and

time-series classifications [5], [34], when tested in combina-

tion with SVM. However, alignment kernels have a crucial

drawback; that is, as in other kernel methods, they scale poorly

due to their quadratic computation complexity in the number

of training data.

Kernel approximations using feature maps (FMs) have been

proposed to solve the scalability issues regarding kernel meth-

ods. FMs project training data into low-dimensional vectors

such that the kernel value (similarity) between each pair of

training data is approximately equal to the inner product of the

corresponding pair of low dimensional vectors. Then, linear

SVM are trained on the projected vectors, thereby significantly

improving the scalability, while preserving their prediction

accuracy. Although a variety of kernel approximations using

FMs for enhancing the scalability of kernel methods have

been proposed (e.g., Jaccard kernels [19], polynomial ker-

nels [23] and Min-Max kernels [18]), and random Fourier

features (RFFs) [24] are an approximation of shift-invariant

kernels (e.g., Laplacian and radial basis function (RBF) ker-

nels), approximation for string alignment kernels has not been

studied. Thus, an important open challenge, which is required

for large-scale analyses of string data, is to develop a kernel

approximation for string alignment kernels.

Several metric embeddings for string distance measures

have been proposed for large-scale string processing [2], [4].

Edit sensitive parsing (ESP) [4] is a metric embedding of a

string distance measure called edit distance with moves (EDM)

that consists of ordinal edit operations of insertion, deletion

and replacement in addition to substring move operation.

ESP maps all the strings from the EDM space into integer

vectors named characteristic vectors in the L1 distance space.

To date, ESP has been applied only to string processing

such as string compression [21], indexing [29], edit distance

computation [4]; however, as we will see, there remains high

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/286340927?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1802.06382v10


TABLE I
SUMMARY OF STRING ALIGNMENT KERNELS.

Training Training Prediction
Approach time space time

GAK [5], [6] Global alignment O(N2L2) O(N2) O(NL2)
LAK [25] Local alignment O(N2L2) O(N2) O(NL2)

D2KE [30], [31] Random feature map O(NDL2) O(N(L+D)) O(DL2)

SFMEDM (this study) ESP O(NL+ dDN) O(NL logNL+ND + d) O(L+ dD)
SFMCGK (this study) CGK O(NL+ dDN) O(L|Σ|+ND + d) O(L+ dD)

potential for application to an approximation of alignment

kernels. ESP is expected to be effective for approximating

alignment kernels, because it approximates EDM between

strings as L1 distance between integer vectors.

Contribution. In this paper, we present SFMEDM as the

first approximation of alignment kernels for solving large-

scale learning problems on string data. Key ideas behind the

proposed method are threefold: (i) to project input strings into

characteristic vectors leveraging ESP, (ii) to map characteristic

vectors into vectors of RFFs by FMs, and (iii) to train linear

SVM on the mapped vectors. However, applying FMs for

RFFs to high-dimensional vectors in a direct way requires

memory linearly proportional to not only dimension d of

input vectors but also dimension D of RFF vectors. In fact,

characteristic vectors as input vectors for FMs tend to be very

high dimensional d for solving large-scale problems using

FMs, and output vectors of RFFs needs to also be high-

dimensional D for achieving high prediction accuracies, and

those conditions limit the applicability of FMs on a large-

scale. Although fastfood approach [16] and orthogonal range

reporting [32] have been proposed for efficiently computing

RFFs in O(D log d) time and O(d) memory, they are only

applicable to RFFs for approximating RBF kernels with a

theoretical guarantee. Accordingly, in this study, we present

space-efficient FMs (SFMs) that requires only O(d) memory

to solve this problem and can be used for approximating

any shift-invariant kernel such as a Laplacian kernel. This

is an essential property which is required for approximating

alignment kernels and has not been taken into account by

previous research. Our SFMEDM has the following desirable

properties:

1) Scalability: SFMEDM is applicable to massive string

data.

2) Fast training: SFMEDM trains SVM fast.

3) Space efficiency: SFMEDM trains SVM space-

efficiently.

4) Prediction accuracy: SFMEDM can achieve high

prediction accuracy.

We experimentally test the ability of SFMEDM to train

SVM with various massive string data, and demonstrate that

SFMEDM has superior performance in terms of prediction

accuracy, scalability and computational efficiency.

II. RELATED WORK

Several alignment kernels have been proposed for analyzing

string data. We briefly review the state of the art, which

is also summarized in Table I. Early methods are proposed

in [1], [27], [34] and are known not to satisfy the positive

definiteness for their kernel matrices. Thus, they are proposed

with numerical corrections for any deficiency of the kernel

matrices.

The global alignment kernel (GAK) [5], [6] is an alignment

kernel based on global alignments originally proposed for

time series data. GAK defines a kernel as a summation score

of all possible global alignments between two strings. The

computation time of GAK is O(N2L2) for number of strings

N and the length of strings L, and its space usage is O(N2).
A local alignment kernel (LAK) on the notion of the

Smith-Waterman algorithm [28] for detecting protein remote

homology was proposed by Saigo et al. [25]. LAK measures

the similarity between each pair of strings by summing up

scores obtained from local alignments with gaps of strings.

The computation time of LAK is O(N2L2) and its space

usage is O(N2). Although, in combination with SVM, LAK

achieves high classification accuracies for protein sequences,

LAK is applicable to protein strings only because its scoring

function is optimized for proteins.

D2KE [30] is a random feature map from structured data

to feature vectors such that a distance measure between each

pair of the structured data is preserved by the inner product

between the corresponding pair of mapped vectors. The feature

vector for each input structured data is built as follows: (i)

D structured data in input are sampled; (ii) the D-dimension

feature vector for each structured data is built such that each

dimension of the feature vector is defined as the distance

between the structured data and a sampled one. D2KE has

been applied to time series data [31]; however, as we will see,

D2KE cannot achieve high prediction accuracies when it is

applied to string data.

Despite the importance of a scalable learning with alignment

kernels, no previous work has been able to achieve high

scalabilities while preserving high prediction accuracies. We

present SFMEDM, the first scalable learning with string align-

ment kernels that meets these demands and is made possible

by leveraging an idea behind ESP and SFM.

CGK [2] is another metric embedding for edit distance and

maps input strings Si of alphabet Σ and of the maximum

length L into strings S′

i of fixed-length L such that the edit

distance between each pair of input strings is approximately

preserved by the Hamming distance between the correspond-

ing pair of mapped strings. Recently, CGK has been applied

to the problem of edit similarity joins [33]. We also present



a kernel approximation of alignment kernels called SFMCGK

by leveraging an idea behind CGK and SFM.

Details of the proposed method are presented in the next

section.

III. EDIT SENSITIVE PARSING

Edit sensitive parsing (ESP) [4] is an approximation method

for efficiently computing edit distance with moves (EDM).

EDM is a string-to-string distance measure for turning one

string into another in a series of string operations, where a

substring move is included as a string operation in addition

to typical string operations such as insertion, deletion and

replacement. Formally, let S be a string of length L and S[i]
be the i-th character in S. EDM(S, S′) for two strings S
and S′ is defined as the minimum number of edit operations

defined below to transform S into S′ as following:

Insertion: character a at position i in S is inserted, resulting

in S[1]...S[i− 1]aS[i]S[i+ 1]...S[L];
Deletion: character S[i] at position i in S is deleted, resulting

in S[1]...S[i− 1]S[i+ 1]...S[L];
Replacement: character S[i] at position i in S is replaced by

a, resulting in S[1]...S[i− 1]aS[i+ 1]...S[L];
Substring move: a substring S[i]S[i+1]...S[j] in S is moved

and inserting at position p, resulted in S[1]...S[i − 1]S[j +
1]...S[p− 1]S[i]...S[j]S[p]...S[L].
Computing EDM between two strings is known as an NP-

complete problem [26]. ESP can approximately compute EDM

by embedding strings into L1 vector space by a parsing.

Given string S, ESP builds a parse tree named an ESP tree,

which is illustrated in Figure 1 as an example. The ESP tree is

a balanced tree and each node in the ESP tree belongs to one

of three types: (i) a node with three children, (ii) a node with

two children and (iii) a node without children (i.e., a leaf). In

addition, internal nodes in the ESP tree have the same node

label if and only if they have children satisfying both two

conditions: (i) the numbers of those children are the same,

and (ii) the node labels of those children are the same in the

left-to-right order. The height of ESP tree is O(logL) for the

length of input string L.

Let V (S) ∈ Nd be a d-dimension integer vector built

from ESP tree T (S) such that each dimension of V (S) is

the number of a node label appearing in T . V (S) is called

characteristic vectors. ESP builds ESP trees such that as

many subtrees with the same node labels as possible are built

for common substrings for strings S and S′, resulted in an

approximation of EDM between S and S′ by L1 distance

between their characteristic vectors V (S) and V (S′), i.e.,

EDM(S, S′) ≈ ||V (S) − V (S′)||1, where || · ||1 is an L1

norm. More precisely, the upper and lower bounds of the

approximation are as follows,

EDM(S, S′) ≤ ||V (S)− V (S′)||1

≤ O(logL log∗ L)EDM(S, S′),

where log∗ L is the iterated logarithm of L, which is recur-

sively defined as log1 L = log2 L, logi+1 L = log logi L and

log∗ L = min{k; logk L ≤ 1, i ≥ 1} for a positive integer L.

ABBAABA B B

Fig. 1. Illustration of an ESP tree for string S = ABABABBAB.

Detail of the ESP algorithm is presented in the appendix.

IV. SPACE-EFFICIENT FEATURE MAPS

In this section we present our new SFMs for RFFs using

space proportional to the dimension d of characteristic vectors

and independent of the RFF target dimension D. The proposed

SFMs improve space usage for generating RFFs from O(dD)
to O(d) while preserving theoretical guarantees (concentration

bounds). The method is general and can be used for approxi-

mating any shift-invariant kernel.

From an abstract point of view, an RFF is based on a way

of constructing a random mapping

zr : R
d → [−1,+1]2

such that for every choice of vectors x,y ∈ Rd we have

E[zr(x)
′zr(y)] = k(x,y),

where k is the kernel function. The randomness of zr comes

from a vector r ∈ Rd sampled from an appropriate distribution

Dk that depends on kernel function k (see section V for more

details), and the expectation is over the choice of r. For the

purposes of this section, all that needs to be known about

Dk is that the d vector coordinates are independently sampled

according to the marginal distribution ∆k.

Since (zr(x)
′zr(y))

2 ≤ 1 we have V ar(zr(x)
′zr(y)) ≤ 1,

i.e., bounded variance; however, this in itself does not imply

the desired approximation as k(x,y) ≈ zr(x)
′zr(y). Indeed,

zr(x)
′zr(y) is a poor estimator of k(x,y). The accuracy of

RFFs can be improved by increasing the output dimension

to D ≥ 2. Specifically RFFs use D/2 independent vectors

r1, . . . , rD/2 ∈ Rd sampled from Dk, and they consider FMs

z : x 7→
√

2
D

(

zr1(x), zr2(x), . . . , zrD/2
(x)

)

that concatenates the values of D/2 functions to one D-

dimensional vector. It can then be shown that |z(x)′z(y) −
k(x,y)| ≤ ε with high probability for sufficiently large

D = Ω(1/ε2).
To represent the function z, it is necessary to store a matrix

containing vectors r1, . . . , rD/2, which uses space O(dD).
Our assumption for ensuring good kernel approximations is

that the vectors ri do not need to be independent. Instead, for

a small integer parameter t ∈ N , we compute each vector ri
using a hash function h : {1, . . . , D/2} → Rd chosen from a

t-wise independent family such that for every i, h(i) comes

from distribution Dk. Then, instead of storing r1, . . . , rD/2,

we only store the description of the hash function h in memory



O(td). A priori, two issues seemingly concern this approach:

• It is unclear how to construct t-wise independent

hash functions with output distribution Dk.

• Is t-wise independence sufficient to ensure results

similar to the fully independent setting?
We address these issues in the next two subsections.

A. Hash functions with distribution Dk

For concreteness, our construction is based on the following

class of t-wise independent hash functions, where t ∈ N

is a parameter: For a = (a0, a1, . . . , at−1) ∈ [0, 1]t chosen

uniformly at random, let

fa(x) =
t−1
∑

j=0

ajx
j mod 1

where y mod 1 computes the fractional part of y ∈ R. It can

be shown that any t distinct integer inputs i1, . . . , it ∈ N, the

vector (fa(i1), . . . , fa(it)) is uniformly distributed in [0, 1]t.
Let CDF−1 denote the inverse of the cumulative distri-

bution function of the marginal distribution ∆k. Then, if y is

uniformly distributed in [0, 1], CDF−1(y) ∼ ∆k. Accordingly

hash function h can be constructed where the j-th coordinate

on input i is given, as

h(i)j = CDF−1(f
a
j(i))

where a1, . . . , ad are chosen independently from [0, 1]d. We

see that for every i ∈ N, h(i) = (h(i)1, . . . , h(i)d) has

distribution Dk. Furthermore, for every set of t distinct integer

inputs i1, . . . , it ∈ N, the hash values h(i1), . . . , h(it) are

independent.

B. Concentration bounds

We then show that for RFFs, D = O(1/ε2) random features

suffice to approximate the kernel function within error ε with

probability arbitrarily close to 1.

Theorem 1: For every pair of vectors x,y ∈ Rd, if the

mapping z is constructed as described above using t ≥ 2, for

every ε > 0, it follows that

Pr[|z(x)′z(y) − k(x,y)| ≥ ε] ≤ 2/(ε2D) .

Proof: Our proof follows the same outline as the standard

proof of Chebychev’s inequality. Consider the second central

moment:

E

[

(z(x)′z(y)− k(x,y))
2
]

= E











2
D

D/2
∑

i=1

zh(i)(x)
′zh(i)(y) − k(x,y)





2






= E





D/2
∑

i=1

(

zh(i)(x)
′zh(i)(y)−

D
2 k(x,y)

)2





= 4
D2

D/2
∑

i=1

E

[

(

zh(i)(x)
′zh(i)(y)−

D
2 k(x,y)

)2
]

≤ 2/D .

Algorithm 1 Generation of Cauchy random numbers using

2-wise independent hash function. array1, array2: arrays of

d 64-bit unsigned integers; UMAX32: maximum value of

unsigned 32-bit integer; β: a parameter.

1: Initialize array1 and array2 with 64-bit random numbers

as unsigned integers.

2: function FUNC F(i, j)

3: f = array1[j] + array2[j] · i ⊲ Compute hash value

4: v = f >> 32 ⊲ Get the most-significant 32-bit of

value

5: return v/UMAX32 ⊲ Return value in [0, 1]

6: function FUNC H(i, j)

7: u = Func F (i, j)
8: return tan(π · (u− 0.5))/β ⊲ Convert random

number u to Cauchy random number

Algorithm 2 Construction of RFFs by SFMs. z: vector of

RFFs; D: dimension of z; V : characteristic vector; d: dimen-

sion of V .

1: function SFM(V )

2: for i = 1, ..., D/2 do

3: s = 0
4: for j = 1, ..., d do

5: s = s+ V [j] · Func H(i, j)

6: z[2 · i− 1] =
√

2
D · sin(s)

7: z[2 · i] =
√

2
D · cos(s)

8: return z

The second equality above uses 2-wise independence, and

the fact that

E





D/2
∑

i=1

zh(i)(x) · zh(i)(y) −
D
2 k(x,y)



 = 0

to conclude that only D/2 terms in the expansion have nonzero

expectation. Finally, we have:

Pr[|z(x)′z(y) − k(x,y)| ≥ ε]

≤ Pr[(z(x)′z(y) − k(x,y))2 ≥ ε2]

≤ E[(z(x)′z(y) − k(x,y))2]/ε2 ≤ 2/(ε2D),

where the second inequality follows from Markov’s inequal-

ity. This concludes the proof.

In the original analysis of RFFs, a strong approximation

guarantee was considered; namely, the kernel function for

all pairs of points x,y in a bounded region of Rd was

approximated. This kind of result can be achieved by choosing

t ≥ 2 sufficiently large to obtain strong tail bounds. However,

we show that the point-wise guarantee (with t = 2) provided

by Theorem 1 is sufficient for an application in kernel approx-

imations in Sec. VII.



TABLE II
SUMMARY OF DATASETS.

Dataset Number #positives Alphabet size Average length

Protein 3,238 96 20 607
DNA 3,238 96 4 1,827
Music 10,261 9,022 61 329
Sports 296,337 253,017 63 307
Compound 1,367,074 57,536 44 53

TABLE III
EXECUTION TIME IN SECONDS, MEMORY IN MEGA BYTES AND DIMENSION d OF CHARACTERISTIC VECTORS BY ESP AND CGK FOR EACH DATASET.

Data Protein DNA Music Sports Compound

Method ESP CGK ESP CGK ESP CGK ESP CGK ESP CGK

Time (sec) 1.25 0.87 2.01 2.63 1.86 0.86 47.83 34.08 32.73 28.70
Memory (MB) 1, 042.90 0.09 1, 049.89 3.38 1, 048.30 0.37 1, 514.23 0.54 1, 165.60 0.08
Dimension d 707, 922 4, 950, 686 969, 653 19, 192, 656 910, 110 2, 129, 505 18, 379, 173 3, 095, 844 5, 302, 660 485, 840

V. SCALABLE ALIGNMENT KERNELS

We present the SFMEDM algorithm for scalable learning

with alignment kernels hereafter. Let us assume a collection

of N strings and their labels (S1, y1), (S2, y2), ..., (SN , yN )
where yi ∈ {0, 1}. We define alignment kernels using

EDM(Si, Sj) for each pair of strings Si and Sj as follows,

k(Si, Sj) = exp(−EDM(Si, Sj)/β),

where β is a parameter. We apply ESP to each Si for

i = 1, 2, ..., N and build ESP trees T1, T2, ..., TN . Since ESP

approximates EDM(Si, Sj) as an L1 distance between char-

acteristic vectors V (Si) and V (Sj) built from ESP trees Ti and

Tj for Si and Sj , i.e., EDM(Si, Sj) ≈ ||V (Si) − V (Sj)||1,

k(Si, Sj) can be approximated as follows,

k(Si, Sj) ≈ exp(−||V (Si)− V (Sj)||1/β). (1)

Since Eq.1 is a Laplacian kernel, which is also known as a

shift-invariant kernel [24], we can approximate k(Si, Sj) using

FMs z(x) for RFFs as follows,

k(Si, Sj) ≈ z(V (Si))
′z(V (Sj)),

where z(x) =
√

2
D (zr1 (x), zr2(x), ..., zrD/2

(x)). For Lapla-

cian kernels, zrm(x) for each m = 1, 2, ..., D/2 is defined

as

zrm(x) = (cos (r⊤mx), sin (r⊤mx)) (2)

where random vectors rm ∈ Rd for m = 1, 2, ..., D/2
are sampled from the Cauchy distribution. We shall refer to

approximations of alignment kernels leveraging ESP and FMs

as FMEDM.

Applying FMs to high dimensional characteristic vectors

consumes O(dD) memory for storing vectors rm ∈ Rd for

m = 1, 2, ..., D/2. Thus, we present SFMs for RFFs using

only O(td) memory by applying t-wise independent hash

functions introduced in Sec. IV. We fix t = 2 in this study,

resulted in O(d) memory. We shall refer to approximations of

alignment kernels leveraging ESP and SFMs as SFMEDM.

Algorithm 1 generates random numbers from a Cauchy

distribution by using O(d) memory. Two arrays array1 and

array2, initialized with 64-bit random numbers as unsigned

integers, are used. Function fa(x) is implemented using

array1 and array2 in Func F and returns a random number

in [0, 1] for given i and j as input. Then, random number u
returned from Func F is converted to a random number from

the Cauchy distribution in Func H as tan(π · (u − 0.5))/β
at line 8. Algorithm 2 implements SFMs generating RFFs in

Eq.2. Computation time and memory for SFMs are O(dDN)
and O(d), respectively.

VI. FEATURE MAPS USING CGK EMBEDDING

CGK [2], [33] is another string embedding using a ran-

domized algorithm. Let Si for i = 1,2,...,N be input strings

of alphabet Σ and let L be the maximum length of input

strings. CGK maps input strings Si in the edit distance space

into strings S′

i of length L in the Hamming space, i.e, the

edit distance between each pair Si and Sj of input strings

is approximately preserved by the Hamming distance of the

corresponding pair S′

i and S′

j of the mapped strings. See [33]

for the detail of CGK.

To apply SFMs, we convert mapped strings S′

i in the

Hamming space by CGK to characteristic vectors V C(S′

i) in

the L1 distance space as follows. We view elements S′

i[j] for

j = 1,2,...,L as locations (of the nonzero elements) instead of

characters. For example, when Σ = {1, 2, 3}, we view each

S′

i[j] as a vector of length |Σ| = 3. If S′

i[j] = 1, then we code

it as (0.5, 0, 0); if S′

i[j] = 3, then we code it as (0, 0, 0.5).
We then concatenate those L vectors into one vector V C(S′

i)
of dimension L|Σ| and with L nonzero elements. As a result,

the Hamming distance between original strings S′

i and S′

j is

equal to the L1 distance between obtained vectors V C(S′

i)
and V C(S′

j), i.e., Ham(S′

i, S
′

j) = ||V C(S′

i) − V C(S′

j)||1.

By applying SFMs or FMs to V C(S′

i), we built vectors of

RFFs z(V C(S′

i)). We shall call approximations of alignment

kernels using CGK and SFMs (respectively, FMs) SFMCGK

(respectively, FMCGK).
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Fig. 2. Memory in megabytes for building vectors of RFFs for various dimensions D.
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Fig. 3. Time in seconds for building vectors of RFFs for various dimensions D.

TABLE IV
AVERAGE ERROR BY SFMEDM AND FMEDM FOR EACH DATASET. ALL VALUES ARE MULTIPLIED BY 102 .

Method Protein DNA Music Sports Compound

SFMEDM(D=128) 7.054(±5.320) 7.051(±5.318) 7.058(±5.318) 7.058(±5.319) 7.057(±5.317)
FMEDM(D=128) 7.055(±5.321) 7.054(±2.664) 7.059(±5.318) 7.059(±5.320) 7.057(±5.318)
SFMEDM(D=512) 3.523(±2.662) 3.526(±2.663) 3.526(±2.662) 3.525(±2.662) 3.527(±2.662)
FMEDM(D=512) 3.526(±2.665) 3.526(±2.666) 3.526(±2.663) 3.526(±2.663) 3.526(±2.662)
SFMEDM(D=2048) 1.762(±1.332) 1.762(±1.332) 1.762(±1.332) 1.762(±1.332) 1.761(±1.331)
FMEDM(D=2048) 1.763(±1.332) 1.762(±1.332) 1.762(±1.331) 1.763(±1.331) 1.762(±1.331)
SFMEDM(D=8192) 0.881(±0.666) 0.881(±0.665) 0.879(±0.665) 0.881(±0.665) 0.876(±0.664)
FMEDM(D=8192) 0.880(±0.666) 0.881(±0.666) 0.881(±0.666) 0.881(±0.666) 0.881(±0.665)
SFMEDM(D=16384) 0.623(±0.471) 0.623(±0.470) 0.621(±0.470) 0.623(±0.470) 0.606(±0.461)
FMEDM(D=16384) 0.628(±0.470) 0.623(±0.471) 0.623(±0.471) 0.623(±0.471) 0.623(±0.471)

TABLE V
AVERAGE ERROR BY SFMCGK AND FMCGK FOR EACH DATASET. ALL VALUES ARE MULTIPLIED BY 102 .

Method Protein DNA Music Sports Compound

SFMCGK(D=128) 7.056(±5.319) 7.051(±5.318) 7.059(±5.320) 7.057(±5.319) 7.056(±5.317)
FMCGK(D=128) 7.054(±5.316) 7.055(±5.322) 7.059(±5.319) 7.057(±5.319) 7.060(±5.319)
SFMCGK(D=512) 3.524(±2.662) 3.526(±2.663) 3.526(±2.662) 3.525(±2.662) 3.525(±2.661)
FMCGK(D=512) 3.523(±2.664) 3.526(±2.664) 3.527(±2.661) 3.525(±2.662) 3.527(±2.663)
SFMCGK(D=2048) 1.761(±1.331) 1.762(±1.332) 1.763(±1.332) 1.763(±1.332) 1.762(±1.331)
FMCGK(D=2048) 1.762(±1.332) 1.761(±1.331) 1.332(±1.763) 1.762(±1.331) 1.763(±1.331)
SFMCGK(D=8192) 0.881(±0.662) 0.881(±0.665) 0.881(±0.665) 0.881(±0.665) 0.869(±0.663)
FMCGK(D=8192) 0.881(±0.666) 0.881(±0.666) 0.881(±0.666) 0.881(±0.665) 0.881(±0.666)
SFMCGK(D=16384) 0.623(±0.471) 0.623(±0.470) 0.632(±0.470) 0.623(±0.470) 0.589(±0.453)
FMCGK(D=16384) 0.623(±0.471) 0.623(±0.470) 0.632(±0.471) 0.623(±0.470) 0.623(±0.470)

VII. EXPERIMENTS

In this section, we evaluated the performance of SFMEDM

with five massive string datasets, as shown in Table II.

The ”Protein” and ”DNA” datasets consist of 3,238 human

enzymes obtained from the KEGG GENES database [14],

respectively. Each enzyme in ”DNA” was coded by a string

consisting of four types of nucleotides or bases (i.e., A,

T, G, and C). Similarity, each enzyme in ”Protein” was

coded by a string consisting of 20 types of amino acids.

Enzymes belonging to the isomerases class in the enzyme

commission (EC) numbers in ”DNA” and ”Protein” have

positive labels and the other enzymes have negative labels.

The ”Music” and ”Sports” datasets consist of 10,261 and

296,337 reviews of musical instruments products and sports

products in English from Amazon [11], [22], respectively.

Each review has a rating of five levels. We assigned positive

labels to reviews with four or five levels for rating and negative

labels to the other reviews. The ”Compound” dataset consists

of 1,367,074 bioactive compounds obtained from the NCBI

PubChem database [15]. Each compound was coded by a

string representation of chemical structures called SMILES.

The biological activities of the compounds for human proteins

were obtained from the ChEMBL database. In this study

we focused on the biological activity for the human protein



microtubule associated protein tau (MAPT). The label of

each compound corresponds to the presence or absence of

biological activity for MAPT.

All the methods were implemented by C++, and all

the experiments were performed on one core of a quad-

core Intel Xeon CPU E5-2680 (2.8GHz). The execu-

tion of each method was stopped if it did not fin-

ish within 48 hours in the experiments. Software and

datasets used in this experiments are downloadable from

https://sites.google.com/view/alignmentkernels/home.

A. Scalability of ESP

First, we evaluated the scalability of ESP and CGK. Ta-

ble III shows the execution time, memory in megabytes and

dimension d of characteristic vectors generated by ESP and

CGK. ESP and CGK were practically fast enough to build

characteristic vectors for large datasets. The executions of

ESP and CGK finished within 60 seconds for ”Compound”

that was the largest dataset consisting of more than 1 million

compounds. At most 1.5GB memory was consumed in the

execution of ESP. These results demonstrated high scalability

of ESP for massive datasets.

For each dataset, characteristic vectors of very high di-

mensions were built by ESP and CGK. For example, 18

million dimension vectors were built by ESP for the ”Sports”

dataset. Applying the original FMs for RFFs to such high

dimension characteristic vectors consumed huge amount of

memory, deteriorating the scalability of FMs. The proposed

SFMs can solve the scalability problem, which will be shown

in the next subsection.

B. Efficiency of SFMs

We evaluated the efficiency of SFMs applied to character-

istic vectors built from ESP, and we compared SFMs with

FMs. We examined combinations of characteristic vectors

and projected vectors of SFMEDM, FMEDM, SFMCGK and

FMCGK. The dimension D of projected vectors of RFFs was

examined for D = {128, 512, 2048, 8192, 16384}.

Figure 2 shows the amount of memory consumed in SFMs

and FMs for characteristic vectors built by ESP and CGK for

each dataset. According to the figure, a huge amount of mem-

ory was consumed by FMs for high dimension characteristic

vectors and projected vectors. Around 1.1TB and 323GB of

memory were consumed by FMEDM for D = 16, 384 for

”Sports” and ”Compound”, respectively. Those huge amounts

of memory made it impossible to build high-dimension vectors

of RFFs. The memory required by SFMs was linear in regard

to dimension d of characteristic vectors for each dataset. Only

280MB and 80MB of memory were consumed by SFMEDM

for D = 16, 384 for ”Sports” and ”Compound”, respectively.

These results suggest that compared with FMEDM, SFMEDM

dramatically reduces the amount of required memory.

Figure 3 shows the execution time for building projected

vectors for each dataset. According to the figure, execution

time increases linearly with dimension D for each method

and for ”Compound”, SFMs built 16,384-dimension vectors

of RFFs in around nine hours.

We evaluated accuracies of our approximations of alignment

kernels in terms of average error of RFFs, defined as

N
∑

i=1

N
∑

j=i

|k(Si, Sj)− z(V (Si))
′z(V (Sj))|/(N(N + 1)/2),

where k(Si, Sj) is defined by Eq. 1 and β = 1 was fixed.

Average error of SFMs was compared with that of FMs for

each dataset. Table IV shows average error of SFMs and FMs

using characteristic vectors built from ESP for each dataset.

The average errors of SFMEDM and FMEDM are almost the

same for all datasets and dimension D. The accuracies of

FMs were preserved in the case of SFMs, while the amount

of memory required by FMs was dramatically reduced. The

same tendencies were observed for average errors of SFMs in

combination with CGK, as shown in Table V.

C. Classification performance of SFMEDM

We evaluated classification abilities of SFMEDM,

SFMCGK, D2KE, LAK and GAK. We used

an implementation of LAK downloadable from

http://sunflower.kuicr.kyoto-u.ac.jp/∼hiroto/project/homology.html.

We implemented D2KE by C++ with edit distance

as a distance measure for strings. Laplacian kernels

with characteristic vectors of ESP and CGK in Eq.1

were also evaluated and denoted as ESPKernel and

CGKKernel, respectively. In addition, we evaluated

a classification ability of the state-of-the-art string

kernel [8], which we shall refer to as STK17, and we

used an implementation of STK17 downloadable from

https://github.com/mufarhan/sequence class NIPS 2017.

We used LIBLINEAR [7] for training linear SVM with

SFMEDM and SFMCGK. We trained non-linear SVM with

GAK, LAK, ESPKernel and CGKKernel using LIBSVM [3].

We performed three-fold cross-validation for each dataset and

measured the prediction accuracy by the area under the ROC

curve (AUC). Dimension D of the vectors of RFFs and D2KE

was examined for D = {128, 512, 2048, 8192, 16384}. We

selected the best parameter achieving the highest AUC among

all combinations of the kernel’s parameter β={1, 10, 100,
1000, 10000} and the SVM’s parameter C ={0.001, 0.01,
0.1, 1, 10, 100}.

Table VI shows the execution time for building RFFs and

computing kernel matrices in addition to training linear/non-

linear SVM for each method. LAK was applied to only

”Protein” because its scoring function was optimized for

protein sequences. It took 9 hours for LAK to finish the

execution, which was the most time-consuming of all the

methods in the case of ”Protein”. The execution of GAK

finished within 48 hours for ”Protein” and ”Music” only,

and it took around seven hours and 28 hours for ”Protein”

and ”Music”, respectively. The executions of D2KE did not

finish within 48 hours for three large datasets of ”Music”,

”Sports” and ”Compound”. In addition, the executions of

https://sites.google.com/view/alignmentkernels/home
http://sunflower.kuicr.kyoto-u.ac.jp/~hiroto/project/homology.html
https://github.com/mufarhan/sequence_class_NIPS_2017


TABLE VI
EXECUTION TIME IN SECONDS FOR BUILDING FEATURE VECTORS AND COMPUTING KERNEL MATRICES IN ADDITION TO TRAINING LINEAR/NON-LINEAR

SVM FOR EACH METHOD.

Method Protein DNA Music Sports Compound

SFMEDM(D=128) 5 8 11 204 261

SFMEDM(D=512) 22 34 47 799 1,022

SFMEDM(D=2048) 93 138 193 3,149 4,101

SFMEDM(D=8192) 367 544 729 12,179 16,425

SFMEDM(D=16384) 725 1,081 1,430 24,282 32,651

SFMCGK(D=128) 14 52 26 452 397

SFMCGK(D=512) 60 222 104 1,747 1,570

SFMCGK(D=2048) 237 981 415 7,156 6,252

SFMCGK(D=8192) 969 3,693 1,688 27,790 25,054

SFMCGK(D=16384) 1,937 7,596 3,366 53,482 49,060

D2KE(D=128) 319 4,536 296 8,139 1,641

D2KE(D=512) 1,250 19,359 1244 34,827 6,869

D2KE(D=2048) 5,213 76,937 5,018 140,187 28,116

D2KE(D=8192) 21,208 >48h 19,716 >48h >48h

D2KE(D=16384) 43,417 >48h 38,799 >48h >48h

LAK 31,718 - - - -

GAK 25,252 >48h 101,079 >48h >48h

EDMKernel 20 28 162 >48h >48h

STK17 3218 917 >48h >48h >48h
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EDMKernel and CGKKernel did not finish within 48 hours for

”Sports” and ”Compound”. These results suggest that existing

alignment kernels are unsuitable for applications to massive

string datasets. The executions of D2KE did not finish when

large dimensions (e.g., D = 8, 192 and D = 16, 384) were

used, which showed that creating high dimension vectors for

achieving high classification accuracies by D2KE is time-

consuming. The executions of SFMEDM and SFMCGK fin-

ished with 48 hours for all datasets. SFMEDM and SFMCGK

took around nine hours and 13 hours, respectively, for ”Com-

pound” consisting of 1.3-million strings in the setting of large

D = 16, 382.

Figure 4 shows amounts of memory consumed for training

linear/non-linear SVM for each method, where Here, GAK,

LAK, EDMKernel, CGKKernel and STK17 are represented

as ”Kernel”. ”Kernel” required a small amount of memory for

the small datasets (namely, ”Protein”, ”DNA” and ”Music”),

but it required a huge amount of memory for the large

datasets (namely, ”Sports” and ”Compound”). For example,

it consumed 654 GB and 1.3 TB of memory for ”Sports”

and ”Compound”, respectively. The memories for SFMEDM,

SFMCGK and D2KE were at least one order of magnitude

smaller than those for ”Kernel”. SFMEDM, SFMCGK and

D2KE required 36GB and 166GB of memory for ”Sports”

and ”Compound” in the case of large D = 16, 382, respec-

tively. These results demonstrated the high memory efficiency

of SFMEDM and SFMCGK. Although training linear SVM

with vectors built by D2KE was space-efficient, prediction

accuracies were not high, which is presented next.

Figure 5 shows the classification accuracy of each method,

where the results for the methods not finished with 48 hours

were not plotted. The prediction accuracies of SFMEDM

and SFMCGK were improved for larger D. The prediction

accuracy of SFMEDM was higher than that of SFMCGK

for any D on all datasets and was also higher than those of

all the kernel methods (namely, LAK, GAK, ESPKernel and



CGKKernel and STK17). The prediction accuracies of D2KE

were worse than those of SFMEDM and were not improved

for even large D. These results suggest that SFMEDM can

achieve the highest classification accuracy and it is much more

efficient than the other methods in terms of memory and time

for building RFFs and training SVM.

VIII. CONCLUSION

We have presented the first feature maps for alignment ker-

nels, which we call SFMEDM, presented SFMs for computing

RFFs space-efficiently, and demonstrated its ability to learn

SVM for large-scale string classifications with various massive

string data, and we demonstrate the superior performance

of SFMEDM with respect to prediction accuracy, scalability

and computation efficiency. Our SFMEDM has the following

appealing properties:

1) Scalability: SFMEDM is applicable to massive string

data (see Section VII).

2) Fast training: SFMEDM trains SVMs fast (see Sec-

tion VII-C).

3) Space efficiency: SFMEDM trains SVMs space-

efficiently (see Section VII-C).

4) Prediction accuracy: SFMEDM can achieve high

prediction accuracy (see Section VII-C).

SFMEDM opens the door to new application domains such

as Bioinformatics and natural language processing, in which

large-scale string processing with kernel methods was too

restrictive so far.
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APPENDIX

A. Edit sensitive parsing

In the next section, we introduce left preferential pars-

ing (LPP) as a basic algorithm of ESP. In the later part of

this section, we present the ESP algorithm.

1) Left preferential parsing (LPP): The key idea of LPP

is to make pairs of nodes from the left to the right positions

preferentially in a sequence of nodes at an ESP tree and make

triples of the remaining three nodes. Then, ESP builds type-2

nodes for these pairs of nodes and a type-1 node for the triple

of nodes. In this way, LPP builds an ESP tree in a bottom-up

manner.

More precisely, if the length of sequence Sℓ at the ℓ-th level

of the ESP tree is even, LPP makes pairs of Sℓ[2i − 1] and

Sℓ[2i] for all i ∈ [1, |Sℓ|/2] and builds type-2 nodes for all

the pairs. Thus, Sℓ+1 at the (ℓ + 1)-th level of the ESP tree

is a sequence of type-2 nodes. If the length of sequence Sℓ+1

of the (ℓ + 1)-th level of the ESP tree is odd, LPP makes

pairs of Sℓ[2i − 1] and Sℓ[2i] for each i ∈ [1, |Sℓ/2 − 3|],
and it makes triple of Sℓ[2i− 2], Sℓ[2i− 1] and Sℓ[2i]. LPP

builds type-2 nodes for pairs of nodes and type-1 node for the

triple of nodes. Thus, Sℓ+1 at the (ℓ+ 1)-th level of the ESP

tree is a sequence of type-2 nodes (except the last node) and

a type-1 node as the last node. LPP builds an ESP tree in a

bottom-up manner; that is, it build an ESP tree from leaves

(i.e, ℓ = 1) to the root. See Figure 6 for an example of this

ESP-tree building.

A crucial drawback of LPP is that it builds completely

different ESP trees even for similar strings. For example, as

shown in Figure 1, S′ = AABABABBAB is a string where

character A is inserted at the first position of S. Although S′

and S are similar strings, LPP builds completely different ESP

trees, namely, T ′ and T for S′ and S, respectively, resulting

in a large difference between EDM EDM(S′, S) and L1

distance ||V (S′) − V (S)||1 for characteristic vectors V ′ and

V . Thus, LPP lacks the ability to approximate EDM.

B. The ESP algorithm

ESP uses an engineered strategy while using LPP in its

algorithm. ESP classifies a string into substrings of three

categories and applies different parsing strategies according

to those categories. An ESP tree for an input string is built

ABBAABA B B

Fig. 6. Example of LPP for a sequence S′ = ABABABBAB with odd
length

landmarks                      ✓      ✓　　　              ✓         
labels     -   1   0   1   0   2   4   1
binary    000 001 110 111 010 100 000 101  
sequence   A   B   G   H   C   E   A   F  

Fig. 7. Example of alphabet reduction

by gradually applying this parsing strategy of ESP to strings

from the lowest to the highest level of the tree.

Given sequence Sℓ, ESP divides Sℓ into subsequences in the

following three categories: (i) a substring such that all pairs

of adjacent node labels are different and substring length is

at least 5. Formally, a substring starting from position s and

ending at position e in S satisfies Sℓ[i] 6= Sℓ[i + 1] for any

i ∈ [s, e − 1] and (e − s + 1) ≥ 5; (ii) a substring of the

same node label and with length of at least 5. Formally, a

substring starting from position s and ending at position e
satisfies Sℓ[i] = Sℓ[i+1] for any i ∈ [s, e−1] and (e−s+1) ≥
5; (iii) neither of categories (i) and (ii).

After classifying a sequence into subsequences of the above

three categories, ESP applies different parsing methods to

each substring according to their categories. ESP applies LPP

to each subsequence of sequence Sℓ in categories (ii) and

(iii), and it builds nodes at (ℓ+ 1)-level. For subsequences in

category (i), ESP applies a special parsing technique named

alphabet reduction.

Alphabet reduction. alphabet reduction is a procedure for

converting a sequence to a new sequence with alphabet size of

3 at most. For each symbol Sℓ[i], the conversion is performed

as follows. Sℓ[i−1] is a left adjacent symbol of Sℓ[i]. Suppose

Sℓ[i − 1] and Sℓ[i] are represented as binary integers. Let p
be the index of the least-significant bit in which Sℓ[i − 1]
differs from Sℓ[i], and let bit(p, Sℓ[i]) be the binary integer of

Sℓ[i] at the p-th bit index. label label(Sℓ[i]) is defined as 2p+
bit(p, Sℓ[i]) and label(Sℓ[i]) is computed for each position i in

Sℓ. When this conversion is applied to a sequence of alphabet

Σ, the alphabet size of the resulting label sequence is 2 log |Σ|,
In addition, an important property of labels is that all adjacent

labels in a label sequence are different, i.e., label(Sℓ[i]) 6=
label(Sℓ[i − 1]) for all i ∈ [2, |Sℓ|]. Thus, this conversion

can be iteratively applied to a new label sequence, namely,

label(Sℓ[1])label(Sℓ[2])...label(Sℓ[L]), until its alphabet size

is at most 6.

The alphabet size is reduced from {0, 1, ..., 5} to {0, 1, 2} as

follows. First, each 3 in a sequence is replaced with the least

element from {0, 1, 2} that does not neighbor the 3. Then, the

same procedure is repeated for each 4 and 5, which generates a

new sequence (A) of node labels drawn from {0, 1, 2}, where

no adjacent characters are identical.



Any position i that is a local maximum, i.e., A[i − 1] <
A[i] > A[i + 1], is then selected. Those positions are called

landmarks. In addition, any position i that is a local minimum,

i.e., A[i − 1] > A[i] < A[i + 1], and not adjacent to

an already chosen landmark, is selected as a landmark. An

important property for those landmarks is that for any two

successive landmark positions, i and j, either |i − j| = 2 or

|i− j| = 3 hold, because A is a sequence of no adjacent char-

acters in alphabet {0, 1, 2}. Alphabet reduction for sequence

ABGHCEAF is illustrated in Figure 7.

Finally, type-2 nodes (respectively, type-3 nodes) are built

for subsequences between landmarks i and j of length |i−j| =
2 (respectively, |i− j| = 3).

The computation time of ESP is O(NL).
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