Graph kernels are usually defined in terms of simpler kernels over local
substructures of the original graphs. Different kernels consider different
types of substructures. However, in some cases they have similar predictive
performances, probably because the substructures can be interpreted as
approximations of the subgraphs they induce. In this paper, we propose to
associate to each feature a piece of information about the context in which the
feature appears in the graph. A substructure appearing in two different graphs
will match only if it appears with the same context in both graphs. We propose
a kernel based on this idea that considers trees as substructures, and where
the contexts are features too. The kernel is inspired from the framework in
[6], even if it is not part of it. We give an efficient algorithm for computing
the kernel and show promising results on real-world graph classification
datasets.Comment: To appear in ICONIP 201