162 research outputs found

    Atmospheric parameters and carbon abundance for hot DB white dwarfs

    Full text link
    Atmospheric parameters for hot DB (helium atmosphere) white dwarfs near effective temperatures of 25000K are extremely difficult to determine from optical spectroscopy. This is particularly unfortunate, because this is the range of variable DBV or V777 Her stars. Accurate atmospheric parameters are needed to help or confirm the asteroseismic analysis of these objects. Another important aspect is the new class of white dwarfs - the hot DQ - detected by Dufour et al. (2007), with spectra dominated by carbon lines. The analysis shows that their atmospheres are pure carbon. The origin of these stars is not yet understood, but they may have an evolutionary link with the hotter DBs as studied here. Our aim is to determine accurate atmospheric parameters and element abundances and study the implications for the evolution white dwarfs of spectral classes DB and hot DQ. High resolution UV spectra of five DBs are studied with model atmospheres. We determine stellar parameters and abundances or upper limits of C and Si. These objects are compared with cooler DBs below 20000K. We find photospheric C and no other heavy elements - with extremely high limits on the C/Si ratio - in two of the five hot DBs. We compare various explanations for this unusual composition, which have been proposed in the literature: accretion of interstellar or circumstellar matter, radiative levitation, carbon dredge-up from deeper interior below the helium layer, and a residual stellar wind. None of these explanations is completely satisfactory, and the problem of the origin of the hot DQ remains an open question

    The frequency of planetary debris around young white dwarfs

    Get PDF
    (Abridged) We present the results of the first unbiased survey for metal pollution among H-atmosphere (DA) white dwarfs with cooling ages of 20-200 Myr and 17000K < Teff < 27000K, using HST COS in the far UV between 1130 and 1435 A. The atmospheric parameters and element abundances are determined using theoretical models, which include the effects of element stratification due to gravitational settling and radiative levitation. We find 48 of the 85 DA white dwarfs studied, or 56% show traces of metals. In 25 stars, the elements can be explained by radiative levitation alone, although we argue that accretion has very likely occurred recently. The remaining 23 white dwarfs (27%) must be currently accreting. Together with previous studies, we find no accretion rate trend in cooling age from ~40 Myr to ~2 Gyr. The median, main sequence progenitor of our sample corresponds to a star of ~2 Msun, and we find 13 of 23 white dwarfs descending from 2-3 Msun late B- and A-type stars to be currently accreting. Only one of 14 targets with Mwd > 0.8 Msun is found to be currently accreting, which suggests a large fraction are double-degenerate mergers, and the merger discs do not commonly reform large planetesimals or otherwise pollute the remnant. We reconfirm our previous finding that two white dwarf Hyads are currently accreting rocky debris. At least 27%, and possibly up to ~50%, of all white dwarfs with cooling ages 20-200 Myr are accreting planetary debris. At Teff > 23000K, the luminosity of white dwarfs is likely sufficient to vaporize circumstellar dust, and hence no stars with strong metal-pollution are found. However, planetesimal disruption events should occur in this cooling age and Teff range as well, and likely result in short phases of high mass transfer rates. It appears that the formation of rocky planetary material is common around 2-3 Msun late B- and A-type stars.Comment: Accepted by A&

    The unbiased frequency of planetary signatures around single and binary white dwarfs using Spitzer{\it Spitzer} and Hubble{\it Hubble}

    Get PDF
    This paper presents combined Spitzer{\it Spitzer} IRAC and Hubble{\it Hubble} COS results for a double-blind survey of 195 single and 22 wide binary white dwarfs for infrared excesses and atmospheric metals. The selection criteria include cooling ages in the range 9 to 300 Myr, and hydrogen-rich atmospheres so that the presence of atmospheric metals can be confidently linked to ongoing accretion from a circumstellar disc. The entire sample has infrared photometry, whereas 168 targets have corresponding ultraviolet spectra. Three stars with infrared excesses due to debris discs are recovered, yielding a nominal frequency of 1.5−0.5+1.51.5_{-0.5}^{+1.5} per cent, while in stark contrast, the fraction of stars with atmospheric metals is 45±445\pm4 per cent. Thus, only one out of 30 polluted white dwarfs exhibits an infrared excess at 3-4 ÎŒ\mum in IRAC photometry, which reinforces the fact that atmospheric metal pollution is the most sensitive tracer of white dwarf planetary systems. The corresponding fraction of infrared excesses around white dwarfs with wide binary companions is consistent with zero, using both the infrared survey data and an independent assessment of potential binarity for well-established dusty and polluted stars. In contrast, the frequency of atmospheric pollution among the targets in wide binaries is indistinct from apparently single stars, and moreover the multiplicity of polluted white dwarfs in a complete and volume-limited sample is the same as for field stars. Therefore, it appears that the delivery of planetesimal material onto white dwarfs is ultimately not driven by stellar companions, but by the dynamics of planetary bodies.Comment: 15 pages, 6 figures, 3 tables; accepted for publication in MNRA

    A search for variable white dwarfs in large area time domain surveys: a pilot study in SDSS Stripe 82

    Get PDF
    We present a method to reliably select variable white dwarfs from large area time domain surveys and apply this method in a pilot study to search for pulsating white dwarfs in the Sloan Digital Sky Survey Stripe 82. From a sample 400 high-confidence white dwarf candidates, we identify 24 which show significant variability in their multi-epoch Stripe 82 data. Using colours, we further selected a sample of pulsating white dwarf (ZZ Ceti) candidates and obtained high cadence follow up for six targets. We confirm five of our candidates as cool ZZ Cetis, three of which are new discoveries. Among our 24 candidates we also identify: one eclipsing binary, two magnetic white dwarfs and one pulsating PG1159 star. Finally we discuss the possible causes for the variability detected in the remaining targets. Even with sparse multi-epoch data over the limited area of Stripe 82, we demonstrate that our selection method can successfully identify various types of variable white dwarfs and efficiently select high-confidence ZZ Ceti candidates.Comment: Accepted for publication in MNRAS, 14 pages, 11 figure

    HST Spectra of GW Librae: A Hot Pulsating White Dwarf in a Cataclysmic Variable

    Get PDF
    We have obtained Hubble Space Telescope UV spectra of the white dwarf in GW Lib, the only known non-radially pulsating white dwarf in a cataclysmic variable, and the first known DAZQ variable. The UV light curve reveals large amplitude (10%) pulsationsin the UV with the same periods (646, 376 and 237 s) as those seen at optical wavelengths, but the mean spectrum fits with an average white dwarf temperature (14,700K for a 0.6M_{odot} white dwarf) that is too hot to be in the normal instability strip for ZZ Ceti stars. A better fit is achieved with a dual temperature model (with 63% of the white dwarf surface at a temperature of 13300K and 37% at 17100K), and a higher mass (0.8M_{odot}) white dwarf with 0.1 solar metal abundance. Since the blue edge of the instability strip moves to higher temperature with increasing mass, the lower temperature of this model is within the instability strip. However, the presence of accretion likely causes abundance and atmospheric temperature differences in GW Lib compared to all known single white dwarf pulsators, and the current models that have been capable of explaining ZZ Ceti stars may not apply.Comment: 13 pages, 4 figure

    Can magnetic fields suppress convection in the atmosphere of cool white dwarfs? A case study on WD2105-820

    Get PDF
    Around 10% of white dwarfs exhibit global magnetic structures with fields ranging from 1 kG to hundreds of MG. Recently, the first radiation magnetohydrodynamics simulations of the atmosphere of white dwarfs showed that convection should be suppressed in their photospheres for magnetic fields with strengths B ≳\gtrsim 50 kG. These predictions are in agreement with our knowledge of stellar physics (e.g. energy transfer in strong magnetic field regions of the solar photosphere), but have yet to be directly confirmed from white dwarf observations. We obtained COS far-UV spectroscopy of the weakly magnetic, hydrogen-atmosphere, white dwarf WD2105-820 and of three additional non-magnetic, convective remnants (all in the TeffT_{\mathrm{eff}} range 9000-11,000 K). We fitted both the COS and the already available optical spectra with convective and radiative atmospheric models. As expected, we find that for two of the non-magnetic comparison stars only convective model fits predict consistent TeffT_{\mathrm{eff}} values from both the optical and the FUV spectra. In contrast, for WD2105-820 only the best fitting radiative model produced consistent results.Comment: 8 pages, 7 figures, 1 table, accepted for publication in MNRA

    Optical detection of the 1.1 day variability at the white dwarf GD 394 with TESS

    Full text link
    Recent discoveries have demonstrated that planetary systems routinely survive the post-main-sequence evolution of their host stars, leaving the resulting white dwarf with a rich circumstellar environment. Among the most intriguing of such hosts is the hot white dwarf GD 394, exhibiting a unique 1.150 ± 0.003 day flux variation detected in Extreme Ultraviolet Explorer (EUVE) observations in the mid-1990s. The variation has eluded a satisfactory explanation, but hypotheses include channeled accretion producing a dark spot of metals, occultation by a gas cloud from an evaporating planet, or heating from a flux tube produced by an orbiting iron-cored planetesimal. We present observations obtained with the Transiting Exoplanet Survey Satellite (TESS) of GD 394. The space-based optical photometry demonstrates a 0.12 ± 0.01% flux variation with a period of 1.146 ± 0.001 days, consistent with the EUVE period and the first re-detection of the flux variation outside of the extreme ultraviolet. We describe the analysis of the TESS light curve and measurement of the optical variation, and discuss the implications of our results for the various physical explanations put forward for the variability of GD 394.Published versio

    Detached cataclysmic variables are crossing the orbital period gap

    Get PDF
    A central hypothesis in the theory of cataclysmic variable (CV) evolution is the need to explain the observed lack of accreting systems in the ~2-3 h orbital period range, known as the period gap. The standard model, disrupted magnetic braking (DMB), reproduces the gap by postulating that CVs transform into inconspicuous detached white dwarf (WD) plus main sequence (MS) systems, which no longer resemble CVs. However, observational evidence for this standard model is currently indirect and thus this scenario has attracted some criticism throughout the last decades. Here we perform a simple but exceptionally strong test of the existence of detached CVs (dCVs). If the theory is correct dCVs should produce a peak in the orbital period distribution of detached close binaries consisting of a WD and an M4-M6 secondary star. We measured six new periods which brings the sample of such binaries with known periods below 10 h to 52 systems. An increase of systems in the ~2-3 h orbital period range is observed. Comparing this result with binary population models we find that the observed peak can not be reproduced by PCEBs alone and that the existence of dCVs is needed to reproduce the observations. Also, the WD mass distribution in the gap shows evidence of two populations in this period range, i.e. PCEBs and more massive dCVs, which is not observed at longer periods. We therefore conclude that CVs are indeed crossing the gap as detached systems, which provides strong support for the DMB theory.Comment: 12 pages, 6 figures, 2 tables, accepted for publication in MNRA

    Periodic optical variability and debris accretion in white dwarfs: a test for a causal connection

    Get PDF
    Recent Kepler photometry has revealed that about half of white dwarfs (WDs) have periodic, low-level (~ 1e-4 - 1e-3), optical variations. Hubble Space Telescope (HST) ultraviolet spectroscopy has shown that up to about one half of WDs are actively accreting rocky planetary debris, as evidenced by the presence of photospheric metal absorption lines. We have obtained HST ultraviolet spectra of seven WDs that have been monitored for periodic variations, to test the hypothesis that these two phenomena are causally connected, i.e. that the optical periodic modulation is caused by WD rotation coupled with an inhomogeneous surface distribution of accreted metals. We detect photospheric metals in four out of the seven WDs. However, we find no significant correspondence between the existence of optical periodic variability and the detection of photospheric ultraviolet absorption lines. Thus the null hypothesis stands, that the two phenomena are not directly related. Some other source of WD surface inhomogeneity, perhaps related to magnetic field strength, combined with the WD rotation, or alternatively effects due to close binary companions, may be behind the observed optical modulation. We report the marginal detection of molecular hydrogen in WD J1949+4734, only the fourth known WD with detected H_2 lines. We also re-classify J1926+4219 as a carbon-rich He-sdO subdwarf.Comment: MNRAS, in pres

    The orbital period of the recurrent nova V2487 Oph revealed

    Full text link
    We present the first reliable determination of the orbital period of the recurrent nova V2487 Oph (Nova Oph 1998). We derived a value of 0.753±0.0160.753 \pm 0.016 d (18.1±0.418.1 \pm 0.4 h) from the radial velocity curve of the intense He II λ\lambda4686 emission line as detected in time-series X-shooter spectra. The orbital period is significantly shorter than earlier claims, but it makes V2487 Oph one of the longest period cataclysmic variables known. The spectrum of V2487 Oph is prolific in broad Balmer absorptions that resemble a white dwarf spectrum. However, we show that they come from the accretion disc viewed at low inclination. Although highly speculative, the analysis of the radial velocity curves provides a binary mass ratio q≈0.16q \approx 0.16 and a donor star mass M2≈0.21M_2 \approx 0.21 M⊙_\odot, assuming the reported white dwarf mass M1=1.35M_1 = 1.35 M⊙_\odot. A subgiant M-type star is tentatively suggested as the donor star. We were lucky to inadvertently take some of the spectra when V2487 Oph was in a flare state. During the flare, we detected high-velocity emission in the Balmer and He II λ\lambda4686 lines exceeding −2000-2000 km s−1^{-1} at close to orbital phase 0.4. Receding emission up to 12001200 km s−1^{-1} at about phase 0.3 is also observed. The similarities with the magnetic cataclysmic variables may point to magnetic accretion on to the white dwarf during the repeating flares.Comment: Accepted for publication in MNRAS (October 9, 2023
    • 

    corecore