We have obtained Hubble Space Telescope UV spectra of the white dwarf in GW
Lib, the only known non-radially pulsating white dwarf in a cataclysmic
variable, and the first known DAZQ variable. The UV light curve reveals large
amplitude (10%) pulsationsin the UV with the same periods (646, 376 and 237 s)
as those seen at optical wavelengths, but the mean spectrum fits with an
average white dwarf temperature (14,700K for a 0.6M_{odot} white dwarf) that is
too hot to be in the normal instability strip for ZZ Ceti stars. A better fit
is achieved with a dual temperature model (with 63% of the white dwarf surface
at a temperature of 13300K and 37% at 17100K), and a higher mass (0.8M_{odot})
white dwarf with 0.1 solar metal abundance. Since the blue edge of the
instability strip moves to higher temperature with increasing mass, the lower
temperature of this model is within the instability strip. However, the
presence of accretion likely causes abundance and atmospheric temperature
differences in GW Lib compared to all known single white dwarf pulsators, and
the current models that have been capable of explaining ZZ Ceti stars may not
apply.Comment: 13 pages, 4 figure