2 research outputs found

    High-spin structures in Xe 132 and Xe 133 and evidence for isomers along the N=79 isotones

    Get PDF
    The transitional nuclei Xe132 and Xe133 are investigated after multinucleon-transfer (MNT) and fusion-evaporation reactions. Both nuclei are populated (i) in Xe136+Pb208 MNT reactions employing the high-resolution Advanced GAmma Tracking Array (AGATA) coupled to the magnetic spectrometer PRISMA, (ii) in the Xe136+Pt198 MNT reaction employing the GAMMASPHERE spectrometer in combination with the gas-detector array CHICO, and (iii) as an evaporation residue after a Te130(α,xn)Xe134-xn fusion-evaporation reaction employing the HORUS γ-ray array at the University of Cologne. The high-spin level schemes are considerably extended above the Jπ=(7-) and (10+) isomers in Xe132 and above the 11/2- isomer in Xe133. The results are compared to the high-spin systematics of the Z=54 as well as the N=78 and N=79 chains. Furthermore, evidence is found for a long-lived (T1/2â‰1μs) isomer in Xe133 which closes a gap along the N=79 isotones. Shell-model calculations employing the SN100PN and PQM130 effective interactions reproduce the experimental findings and provide guidance to the interpretation of the observed high-spin features

    Shell Evolution towards Ni 78: Low-Lying States in Cu 77

    No full text
    International audienceThe level structure of the neutron-rich 77Cu nucleus is investigated through β-delayed γ-ray spectroscopy at the Radioactive Isotope Beam Factory of the RIKEN Nishina Center. Ions of 77Ni are produced by in-flight fission, separated and identified in the BigRIPS fragment separator, and implanted in the WAS3ABi silicon detector array, surrounded by Ge cluster detectors of the EURICA array. A large number of excited states in 77Cu are identified for the first time by correlating γ rays with the β decay of 77Ni, and a level scheme is constructed by utilizing their coincidence relationships. The good agreement between large-scale Monte Carlo shell model calculations and experimental results allows for the evaluation of the single-particle structure near 78Ni and suggests a single-particle nature for both the 5/2−1 and 3/2−1 states in 77Cu, leading to doubly magic 78Ni
    corecore