98 research outputs found

    The MINERν\nuA Data Acquisition System and Infrastructure

    Full text link
    MINERν\nuA (Main INjector ExpeRiment ν\nu-A) is a new few-GeV neutrino cross section experiment that began taking data in the FNAL NuMI (Fermi National Accelerator Laboratory Neutrinos at the Main Injector) beam-line in March of 2010. MINERν\nuA employs a fine-grained scintillator detector capable of complete kinematic characterization of neutrino interactions. This paper describes the MINERν\nuA data acquisition system (DAQ) including the read-out electronics, software, and computing architecture.Comment: 34 pages, 16 figure

    MINERvA neutrino detector response measured with test beam data

    Get PDF
    The MINERvA collaboration operated a scaled-down replica of the solid scintillator tracking and sampling calorimeter regions of the MINERvA detector in a hadron test beam at the Fermilab Test Beam Facility. This article reports measurements with samples of protons, pions, and electrons from 0.35 to 2.0 GeV/c momentum. The calorimetric response to protons, pions, and electrons are obtained from these data. A measurement of the parameter in Birks' law and an estimate of the tracking efficiency are extracted from the proton sample. Overall the data are well described by a Geant4-based Monte Carlo simulation of the detector and particle interactions with agreements better than 4%, though some features of the data are not precisely modeled. These measurements are used to tune the MINERvA detector simulation and evaluate systematic uncertainties in support of the MINERvA neutrino cross section measurement program.Comment: as accepted by NIM

    Trapping in irradiated p-on-n silicon sensors at fluences anticipated at the HL-LHC outer tracker

    Get PDF
    The degradation of signal in silicon sensors is studied under conditions expected at the CERN High-Luminosity LHC. 200 ÎĽ\mum thick n-type silicon sensors are irradiated with protons of different energies to fluences of up to 3â‹…10153 \cdot 10^{15} neq/cm2^2. Pulsed red laser light with a wavelength of 672 nm is used to generate electron-hole pairs in the sensors. The induced signals are used to determine the charge collection efficiencies separately for electrons and holes drifting through the sensor. The effective trapping rates are extracted by comparing the results to simulation. The electric field is simulated using Synopsys device simulation assuming two effective defects. The generation and drift of charge carriers are simulated in an independent simulation based on PixelAV. The effective trapping rates are determined from the measured charge collection efficiencies and the simulated and measured time-resolved current pulses are compared. The effective trapping rates determined for both electrons and holes are about 50% smaller than those obtained using standard extrapolations of studies at low fluences and suggests an improved tracker performance over initial expectations

    Test beam performance measurements for the Phase I upgrade of the CMS pixel detector

    Get PDF
    A new pixel detector for the CMS experiment was built in order to cope with the instantaneous luminosities anticipated for the Phase I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking with a reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and allows operation at low comparator thresholds. In this paper, comprehensive test beam studies are presented, which have been conducted to verify the design and to quantify the performance of the new detector assemblies in terms of tracking efficiency and spatial resolution. Under optimal conditions, the tracking efficiency is (99.95 ± 0.05) %, while the intrinsic spatial resolutions are (4.80 ± 0.25) μm and (7.99 ± 0.21) μm along the 100 μm and 150 μm pixel pitch, respectively. The findings are compared to a detailed Monte Carlo simulation of the pixel detector and good agreement is found.Peer reviewe

    Characterisation of irradiated thin silicon sensors for the CMS phase II pixel upgrade

    Get PDF
    The high luminosity upgrade of the Large Hadron Collider, foreseen for 2026, necessitates the replacement of the CMS experiment's silicon tracker. The innermost layer of the new pixel detector will be exposed to severe radiation, corresponding to a 1 MeV neutron equivalent fluence of up to Phi(eq) = 2x10(16) cm(-2), and an ionising dose of approximate to 5 MGy after an integrated luminosity of 3000 fb(-1). Thin, planar silicon sensors are good candidates for this application, since the degradation of the signal produced by traversing particles is less severe than for thicker devices. In this paper, the results obtained from the characterisation of 100 and 200 mu m thick p-bulk pad diodes and strip sensors irradiated up to fluences of Phi(eq) = 1.3 x 10(16) cm(-2) are shown.Peer reviewe

    Selection of the silicon sensor thickness for the Phase-2 upgrade of the CMS Outer Tracker

    Get PDF
    During the operation of the CMS experiment at the High-Luminosity LHC the silicon sensors of the Phase-2 Outer Tracker will be exposed to radiation levels that could potentially deteriorate their performance. Previous studies had determined that planar float zone silicon with n-doped strips on a p-doped substrate was preferred over p-doped strips on an n-doped substrate. The last step in evaluating the optimal design for the mass production of about 200 m2^{2} of silicon sensors was to compare sensors of baseline thickness (about 300 ÎĽm) to thinned sensors (about 240 ÎĽm), which promised several benefits at high radiation levels because of the higher electric fields at the same bias voltage. This study provides a direct comparison of these two thicknesses in terms of sensor characteristics as well as charge collection and hit efficiency for fluences up to 1.5 Ă— 1015^{15} neq_{eq}/cm2^{2}. The measurement results demonstrate that sensors with about 300 ÎĽm thickness will ensure excellent tracking performance even at the highest considered fluence levels expected for the Phase-2 Outer Tracker

    Comparative evaluation of analogue front-end designs for the CMS Inner Tracker at the High Luminosity LHC

    Get PDF
    The CMS Inner Tracker, made of silicon pixel modules, will be entirely replaced prior to the start of the High Luminosity LHC period. One of the crucial components of the new Inner Tracker system is the readout chip, being developed by the RD53 Collaboration, and in particular its analogue front-end, which receives the signal from the sensor and digitizes it. Three different analogue front-ends (Synchronous, Linear, and Differential) were designed and implemented in the RD53A demonstrator chip. A dedicated evaluation program was carried out to select the most suitable design to build a radiation tolerant pixel detector able to sustain high particle rates with high efficiency and a small fraction of spurious pixel hits. The test results showed that all three analogue front-ends presented strong points, but also limitations. The Differential front-end demonstrated very low noise, but the threshold tuning became problematic after irradiation. Moreover, a saturation in the preamplifier feedback loop affected the return of the signal to baseline and thus increased the dead time. The Synchronous front-end showed very good timing performance, but also higher noise. For the Linear front-end all of the parameters were within specification, although this design had the largest time walk. This limitation was addressed and mitigated in an improved design. The analysis of the advantages and disadvantages of the three front-ends in the context of the CMS Inner Tracker operation requirements led to the selection of the improved design Linear front-end for integration in the final CMS readout chip
    • …
    corecore