74 research outputs found

    Male fidelity expressed through rapid testosterone suppression of ultrasonic vocalizations to novel females in the monogamous California mouse

    Get PDF
    . (2015). Male fidelity expressed through rapid testosterone suppression of ultrasonic vocalizations to novel females in the monogamous California mouse. Hormones and Behavior, 70, 47-56. doi: 10.1016/j.yhbeh.2015.02.003 The steroid hormone testosterone (T) is a well-known mediator of male sexual behavior in vertebrates. However, less is known about T's rapid effects on sexual behavior, particularly those involving ultrasonic vocalizations (USVs), a mode of communication that can influence mate acquisition in rodents. Using the monogamous California mouse, Peromyscus californicus, we tested whether T rapidly alters male USV production by giving T or saline injections to nonpaired (sexually naĂŻve) males and paired (paternally experienced and pair-bonded) males immediately prior to a brief exposure to an unrelated, novel female. Among non-paired males, no differences in the total number of USVs were observed; however, T increased the proportion of simple sweeps produced. Among paired males, T decreased the number of USVs produced, and this change was driven by a reduction in simple sweeps. These results suggest a differential rapid effect of T pulses between non-paired and paired males upon exposure to a novel female. Additionally, we observed a positive correlation in the production of USVs made between males and novel females, and this relationship was altered by T. Given the importance of USVs in sexual communication, our study supports an essential concept of monogamy in that mate fidelity is reinforced by decreased responsiveness to prospective mates outside of the pair bond. The central mechanism in pair bonded males that decreases their responsiveness to novel females appears to be one that T can trigger. This is among the first studies to demonstrate that T can inhibit sexually related behaviors and do so rapidly

    The geomagnetic environment in which sea turtle eggs incubate affects subsequent magnetic navigation behaviour of hatchlings

    Get PDF
    Loggerhead sea turtle hatchlings (Caretta caretta) use regional magnetic fields as open-ocean navigational markers during trans-oceanic migrations. Little is known, however, about the ontogeny of this behaviour. As a first step towards investigating whether the magnetic environment in which hatchlings develop affects subsequent magnetic orientation behaviour, eggs deposited by nesting female loggerheads were permitted to develop in situ either in the natural ambient magnetic field or in a magnetic field distorted by magnets placed around the nest. In orientation experiments, hatchlings that developed in the normal ambient field oriented approximately south when exposed to a field that exists near the northern coast of Portugal, a direction consistent with their migratory route in the northeastern Atlantic. By contrast, hatchlings that developed in a distorted magnetic field had orientation indistinguishable from random when tested in the same north Portugal field. No differences existed between the two groups in orientation assays involving responses to orbital movements of waves or sea-finding, neither of which involves magnetic field perception. These findings, to our knowledge, demonstrate for the first time that the magnetic environment present during early development can influence the magnetic orientation behaviour of a neonatal migratory animal

    The geomagnetic environment in which sea turtle eggs incubate affects subsequent magnetic navigation behaviour of hatchlings

    Get PDF
    Loggerhead sea turtle hatchlings (Caretta caretta) use regional magnetic fields as open-ocean navigational markers during trans-oceanic migrations. Little is known, however, about the ontogeny of this behaviour. As a first step towards investigating whether the magnetic environment in which hatchlings develop affects subsequent magnetic orientation behaviour, eggs deposited by nesting female loggerheads were permitted to develop in situ either in the natural ambient magnetic field or in a magnetic field distorted by magnets placed around the nest. In orientation experiments, hatchlings that developed in the normal ambient field oriented approximately south when exposed to a field that exists near the northern coast of Portugal, a direction consistent with their migratory route in the northeastern Atlantic. By contrast, hatchlings that developed in a distorted magnetic field had orientation indistinguishable from random when tested in the same north Portugal field. No differences existed between the two groups in orientation assays involving responses to orbital movements of waves or sea-finding, neither of which involves magnetic field perception. These findings, to our knowledge, demonstrate for the first time that the magnetic environment present during early development can influence the magnetic orientation behaviour of a neonatal migratory animal

    Androgen Receptor Modulates Multimodal Displays in the Bornean Rock Frog (Staurois parvus)

    Get PDF
    Multimodal communication is common in the animal kingdom. It occurs when animals display by stimulating two or more receiver sensory systems, and often arises when selection favors multiple ways to send messages to conspecifics. Mechanisms of multimodal display behavior are poorly understood, particularly with respect to how animals coordinate the production of different signals. One important question is whether all components in a multimodal display share an underlying physiological basis, or whether different components are regulated independently. We investigated the influence of androgen receptors (ARs) on the production of both visual and vocal signal components in the multimodal display repertoire of the Bornean rock frog (Staurois parvus). To assess the role of AR in signal production, we treated reproductively active adult males with the antiandrogen flutamide (FLUT) and measured the performance of each component signal in the multimodal display. Our results show that blocking AR inhibited the production of multiple visual signals, including a conspicuous visual signal known as the foot flag, which is produced by rotating the hind limb above the body. However, FLUT treatment caused no measurable change in vocal signaling behavior, or in the frequency or fine temporal properties of males calls. Our study, therefore, suggests that activation of AR is not a physiological prerequisite to the coordination of multiple signals, in that it either does not regulate all signaling behaviors in a male s display repertoire or it does so only in a context-dependent manner

    Standing Variation and the Capacity for Change: Are Endocrine Phenotypes More Variable That Other Traits?

    Get PDF
    Circulating steroid hormone levels exhibit high variation both within and between individuals, leading some to hypothesize that these phenotypes are more variable than other morphological, physiological, and behavioral traits. This should have profound implications for the evolution of steroid signaling systems, but few studies have examined how endocrine variation compares to that of other traits or differs among populations. Here we provide such an analysis by first exploring how variation in three measures of corticosterone (CORT)—baseline, stress-induced, and post-dexamethasone injection—compares to variation in key traits characterizing morphology (wing length, mass), physiology (reactive oxygen metabolite concentration [d-ROMs] and antioxidant capacity), and behavior (provisioning rate) in two populations of tree swallow (Tachycineta bicolor). After controlling for measurement precision and within-individual variation, we found that only post-dex CORT was more variable than all other traits. Both baseline and stress-induced CORT exhibit higher variation than antioxidant capacity and provisioning rate, but not oxidative metabolite levels or wing length. Variation in post-dex CORT and d-ROMs was also elevated in the higher-latitude population in that inhabits a less predictable environment. We next studied how these patterns might play out on a macroevolutionary scale, assessing patterns of variation in baseline testosterone (T) and multiple non-endocrine traits (body length, mass, social display rate, and locomotion rate) across 17 species of Anolis lizards. At the macroevolutionary level, we found that circulating T levels and the rate of social display output are higher than other behavioral and morphological traits. Altogether, our results support the idea that within-population variability in steroid levels is substantial, but not exceptionally higher than many other traits that define animal phenotypes. As such, circulating steroid levels in free-living animals should be considered traits that exhibit similar levels of variability from individual to individual in a population

    HormoneBase, a Population-Level Database of Steroid Hormone Levels Across Vertebrates

    Get PDF
    Hormones are central regulators of organismal function and flexibility that mediate a diversity of phenotypic traits from early development through senescence. Yet despite these important roles, basic questions about how and why hormone systems vary within and across species remain unanswered. Here we describe HormoneBase, a database of circulating steroid hormone levels and their variation across vertebrates. This database aims to provide all available data on the mean, variation, and range of plasma glucocorticoids (both baseline and stress-induced) and androgens in free-living and un-manipulated adult vertebrates. HormoneBase (www.HormoneBase.org) currently includes \u3e6,580 entries from 476 species, reported in 648 publications from 1967 to 2015, and unpublished datasets. Entries are associated with data on the species and population, sex, year and month of study, geographic coordinates, life history stage, method and latency of hormone sampling, and analysis technique. This novel resource could be used for analyses of the function and evolution of hormone systems, and the relationships between hormonal variation and a variety of processes including phenotypic variation, fitness, and species distributions

    Metabolic Scaling of Stress Hormones in Vertebrates

    Get PDF
    Glucocorticoids (GCs) are stress hormones that can strongly influence physiology, behavior, and an organism’s ability to cope with environmental change. Despite their importance, and the wealth of studies that have sought to understand how and why GC concentrations vary within species, we do not have a clear understanding of how circulating GC levels vary within and across the major vertebrate clades. New research has proposed that much interspecific variation in GC concentrations can be explained by variation in metabolism and body mass. Specifically, GC concentrations should vary proportionally with mass-specific metabolic rates and, given known scaling relationships between body mass and metabolic rate, GC concentrations should scale to the -1/4 power of body mass and to the power of 1 with mass-specific metabolic rate. Here, we use HormoneBase, the newly compiled database that includes plasma GC concentrations from free-living and unmanipulated vertebrates, to evaluate this hypothesis. Specifically, we explored the relationships between body mass or mass-specific metabolic rate and either baseline or stress-induced GC (cortisol or corticosterone) concentrations in tetrapods. Our phylogenetically-informed models suggest that, whereas the relationship between GC concentrations and body mass across tetrapods and among mammals is close to -1/4 power, this relationship does not exist in amphibians, reptiles, and birds. Moreover, with the exception of a positive association between stress-induced GC concentrations and mass-specific metabolic rate in birds, we found little evidence that GC concentrations are linked to metabolic rate, although the number of species sampled was quite limited for amphibians and somewhat so for reptiles and mammals. Nevertheless, these results stand in contrast to the generally accepted association between the two and suggest that our observed positive association between body mass and GC concentrations may not be due to the well-established link between mass and metabolism. Large-scale comparative approaches can come with drawbacks, such as pooling and pairing observations from separate sources. However, these broad analyses provide an important counterbalance to the majority of studies examining variation in GC concentrations at the population or species level, and can be a powerful approach to testing both long-standing and new questions in biology

    Do Seasonal Glucocorticoid Changes Depend on Reproductive Investment? A Comparative Approach in Birds

    Get PDF
    Animals go through different life history stages such as reproduction, moult, or migration, of which some are more energy-demanding than others. Baseline concentrations of glucocorticoid hormones increase during moderate, predictable challenges and thus are expected to be higher when seasonal energy demands increase, such as during reproduction. By contrast, stress-induced glucocorticoids prioritize a survival mode that includes reproductive inhibition. Thus, many species down-regulate stress-induced glucocorticoid concentrations during the breeding season. Interspecific variation in glucocorticoid levels during reproduction has been successfully mapped onto reproductive investment, with species investing strongly in current reproduction (fast pace of life) showing higher baseline and lower stress-induced glucocorticoid concentrations than species that prioritize future reproduction over current attempts (slow pace of life). Here we test the >glucocorticoid seasonal plasticity hypothesis>, in which we propose that interspecific variation in seasonal changes in glucocorticoid concentrations from the non-breeding to the breeding season will be related to the degree of reproductive investment (and thus pace of life). We extracted population means for baseline (for 54 species) and stress-induced glucocorticoids (for 32 species) for the breeding and the non-breeding seasons from the database >HormoneBase>, also calculating seasonal glucocorticoid changes. We focused on birds because this group offered the largest sample size. Using phylogenetic comparative methods, we first showed that species differed consistently in both average glucocorticoid concentrations and their changes between the two seasons, while controlling for sex, latitude, and hemisphere. Second, as predicted seasonal changes in baseline glucocorticoids were explained by clutch size (our proxy for reproductive investment), with species laying larger clutches showing a greater increase during the breeding season-especially in passerine species. In contrast, changes in seasonal stress-induced levels were not explained by clutch size, but sample sizes were more limited. Our findings highlight that seasonal changes in baseline glucocorticoids are associated with a species' reproductive investment, representing an overlooked physiological trait that may underlie the pace of life

    Macroevolutionary Patterning in Glucocorticoids Suggests Different Selective Pressures Shape Baseline and Stress-Induced Levels

    Get PDF
    Glucocorticoid (GC) hormones are important phenotypic mediators across vertebrates, but their circulating concentrations can vary markedly. Here we investigate macroevolutionary patterning in GC levels across tetrapods by testing seven specific hypotheses about GC variation and evaluating whether the supported hypotheses reveal consistent patterns in GC evolution. If selection generally favors the “supportive” role of GCs in responding effectively to challenges, then baseline and/or stress-induced GCs may be higher in challenging contexts. Alternatively, if selection generally favors “protection” from GC-induced costs, GCs may be lower in environments where challenges are more common or severe. The predictors of baseline GCs were all consistent with supportive effects: levels were higher in smaller organisms and in those inhabiting more energetically demanding environments. During breeding, baseline GCs were also higher in populations and species with fewer lifetime opportunities to reproduce. The predictors of stress-induced GCs were instead more consistent with the protection hypothesis: during breeding, levels were lower in organisms with fewer lifetime reproductive opportunities. Overall, these patterns indicate a surprising degree of consistency in how some selective pressures shape GCs across broad taxonomic scales; at the same time, in challenging environments selection appears to operate on baseline and stress-induced GCs in distinct ways

    Baseline and Stress-Induced Corticosterone Levels Across Birds and Reptiles Do Not Reflect Urbanication Levels

    Get PDF
    Rates of human-induced environmental change continue increasing with human population size, potentially altering animal physiology and negatively affecting wildlife. Researchers often use glucocorticoid concentrations (hormones that can be associated with stressors) to gauge the impact of anthropogenic factors (e.g. urbanization, noise and light pollution). Yet, no general relationships between human-induced environmental change and glucocorticoids have emerged. Given the number of recent studies reporting baseline and stress-induced corticosterone (the primary glucocorticoid in birds and reptiles) concentrations worldwide, it is now possible to conduct large-scale comparative analyses to test for general associations between disturbance and baseline and stress-induced corticosterone across species. Additionally, we can control for factors that may influence context, such as life history stage, environmental conditions and urban adaptability of a species. Here, we take a phylogenetically informed approach and use data from HormoneBase to test if baseline and stress-induced corticosterone are valid indicators of exposure to human footprint index, human population density, anthropogenic noise and artificial light at night in birds and reptiles. Our results show a negative relationship between anthropogenic noise and baseline corticosterone for birds characterized as urban avoiders. While our results potentially indicate that urban avoiders are more sensitive to noise than other species, overall our study suggests that the relationship between human-induced environmental change and corticosterone varies across species and contexts; we found no general relationship between human impacts and baseline and stress-induced corticosterone in birds, nor baseline corticosterone in reptiles. Therefore, it should not be assumed that high or low levels of exposure to human-induced environmental change are associated with high or low corticosterone levels, respectively, or that closely related species, or even individuals, will respond similarly. Moving forward, measuring alternative physiological traits alongside reproductive success, health and survival may provide context to better understand the potential negative effects of human-induced environmental change
    • …
    corecore