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The geomagnetic environment in which
sea turtle eggs incubate affects
subsequent magnetic navigation
behaviour of hatchlings

Matthew J. Fuxjager†, Kyla R. Davidoff, Lisa A. Mangiamele
and Kenneth J. Lohmann

Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

Loggerhead sea turtle hatchlings (Caretta caretta) use regional magnetic fields

as open-ocean navigational markers during trans-oceanic migrations. Little

is known, however, about the ontogeny of this behaviour. As a first step

towards investigating whether the magnetic environment in which hatchl-

ings develop affects subsequent magnetic orientation behaviour, eggs

deposited by nesting female loggerheads were permitted to develop in situ
either in the natural ambient magnetic field or in a magnetic field distorted

by magnets placed around the nest. In orientation experiments, hatchlings

that developed in the normal ambient field oriented approximately south

when exposed to a field that exists near the northern coast of Portugal, a

direction consistent with their migratory route in the northeastern Atlantic.

By contrast, hatchlings that developed in a distorted magnetic field had

orientation indistinguishable from random when tested in the same north

Portugal field. No differences existed between the two groups in orientation

assays involving responses to orbital movements of waves or sea-finding,

neither of which involves magnetic field perception. These findings, to our

knowledge, demonstrate for the first time that the magnetic environment

present during early development can influence the magnetic orientation

behaviour of a neonatal migratory animal.
1. Introduction
Diverse animals detect the Earth’s magnetic field and exploit it as a source of

information while migrating, homing or moving through their habitat [1,2].

Animals can derive at least two different types of information from the geo-

magnetic field. The first is directional or compass information, which enables

animals to maintain courses in a particular direction such as north or south

[1,3]. In addition, at least a few animals derive positional or map informa-

tion from the geomagnetic field, which enables them to determine where

they are relative to a goal or to change direction when they reach a particular

geographical area along a migratory route [4–6].

Loggerhead sea turtles, Caretta caretta, undergo one of the longest and most

spectacular marine migrations. Hatchling loggerheads that emerge on the east

coast of Florida, USA, enter the sea and immediately embark on a trans-oceanic

migration [7]. Turtles initially swim eastward to the Gulf Stream current, where

many become entrained in the North Atlantic Subtropical Gyre, the circular cur-

rent system that flows around the Sargasso Sea [8,9]. Many loggerheads migrate

across the Atlantic and back before eventually returning to the North American

coast [9,10].

The magnetic sense of loggerhead turtles has been studied extensively for

more than two decades. Young loggerheads in the open sea are guided at

least partly by a ‘magnetic map’, in which regional magnetic fields function

as navigational markers and elicit changes in swimming direction at crucial

locations along the migratory pathway [11,12]. Responses to regional magnetic
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Figure 1. Diagram of a clutch of turtle eggs surrounded by a buried PVC pipe
frame. Each frame had either magnets or aluminium bars attached to it. The
shaded area surrounding and above the eggs indicates the approximate area
typically excavated by a nesting turtle and filled in with sand after egg
deposition. See text for details.
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fields appear to be inherited, inasmuch as they are present in

turtles that have never before been in the ocean [13,14]. More-

over, strong selective pressure probably acts to ensure that, as

the geomagnetic field gradually changes over time, the

responses of hatchlings change accordingly [13,15].

Although loggerhead hatchlings clearly emerge from their

nests with a fully functional magnetic sense, little is known

about the ontogeny of their magnetic navigation behaviour.

For example, the responses to regional magnetic fields might

be genetically encoded and unaffected by environmental vari-

ables such as the ambient magnetic field around the nest.

Alternatively, the field that exists during development and/

or after hatching might influence subsequent magnetic naviga-

tion behaviour. These questions are of interest both with regard

to the ontogeny of behaviour and from a conservation perspec-

tive, given that a common conservation practice is to surround

nests of sea turtles with wire mesh cages that protect eggs from

predators but distort the ambient magnetic field [16].

As a first step towards investigating these issues, we altered

the magnetic field around loggerhead turtle eggs with magnets

and then tested whether turtles raised under these conditions

responded to a regional magnetic field in the same way as con-

trol hatchlings raised in the normal geomagnetic field. Results

indicated that turtles raised in the unnatural field failed to

respond normally to the regional field. Moreover, effects of

this treatment appeared to be limited to orientation behaviour

involving magnetoreception, because incubation in the altered

field had no effect on orientation to wave motion or on sea-

finding behaviour mediated by visual cues. These findings, to

our knowledge, demonstrate for the first time that the magnetic

environment present during early development can influence

subsequent magnetic orientation behaviour of neonates.
2. Material and methods
(a) Locating turtle nests
The study was conducted within a 5 km stretch of beach in

Melbourne Beach, Florida, USA, during the spring and summer

of 2005. During May and June, we walked along the beach each

morning to locate loggerhead nests that had been deposited by

nesting female turtles the night before. Wooden stakes placed

in the vegetation near the base of the closest dunes were used

to mark the location of each nest. Stakes were typically located

about 2–15 m from each clutch.

(b) Experimental design and clutch manipulations
Each nest was randomly assigned to one of three treatment groups.

For the first group, we changed the magnetic environment in which

the eggs developed by placing around each clutch a square PVC

pipe frame with magnets attached. Magnets were used to alter

the field instead of electrically powered coil systems because of

the lack of electricity on the beach and because coil systems could

not be installed around nests without moving the eggs. For the

second group, eggs were surrounded by a PVC pipe frame of iden-

tical dimensions, but with non-magnetic aluminium bars attached

instead of magnets; thus, eggs in this treatment were exposed to the

disturbance of having a PVC pipe frame placed around the clutch,

but the magnetic environment was not disrupted. The final group

consisted of nests that were left undisturbed (no frame was placed

around the eggs). These eggs developed under natural conditions

in the unaltered geomagnetic field.

PVC pipe frames were squares that measured 55.9 cm on a

side, dimensions that are large enough to easily surround a
clutch without contacting the egg cavity itself (figure 1). Magnets

and aluminium bars were attached to opposite sides of the PVC

frame, but positioned so that they faced the inside of the frame.

The magnets were rectangular neodymium rare earth magnets

(N40; National Imports, Falls Church, VA, USA) that measured

0.64 � 1.27 � 10.16 cm. Aluminium bars had identical dimen-

sions. Magnets were arranged so that the north pole of one

magnet and the south pole of the second magnet faced inward

towards each other. This configuration created an unnatural

magnetic field in which the field intensity varied greatly across

the clutch. Measurements with a Model 912 digital gaussmeter

(Magnetic Instrumentation, Inc., Indianapolis, IN, USA) indi-

cated that field intensity ranged from approximately 36–310 mT

within the space occupied by eggs, with the average field inten-

sity in the centre of the frame being about 80 mT. Magnetic

inclination angle also presumably varied greatly, but could not

be measured accurately because the gaussmeter probe could

not be positioned accurately relative to gravity. The natural

field intensity at the study site was 46.7 mT and the inclination

angle was 57.88 (measurements of the natural field were made

with an Applied Physics Systems tri-axial fluxgate magnetometer

model 520A).

Both aluminium bars and magnets were thoroughly wrapped in

waterproof plastic bags so that they did not contact the sand. To

bury a frame around a nest, a trench was dug around each egg

chamber using gardening trowels; care was taken to avoid contact-

ing any eggs during this process. Frames were placed in the trench

so that they were 23 cm below the top of the egg chamber, which

corresponds to the approximate depth of the centre of the egg

chamber in loggerhead nests (Ray Carthy 2005, personal communi-

cation). We then filled the trench with the same moist sand that had

been dug out. When buried, the sides of the frame that held alu-

minium bars or magnets were on the east and west sides of the

clutch, and aligned so that the long axis of the bars or magnets

were parallel with the north–south axis of the local ambient field.
(c) Collection of hatchlings
During morning surveys, we recorded the date that each nest was

deposited on the beach. To predict the date when hatchlings would

emerge from each nest, we monitored the period of incubation

that preceded emergence in other nests deposited on similar

dates and locations on the beach. A few hours before an emergence

was expected, we gently dug into the nest by hand and removed

approximately 20–30 turtles. Hatchlings were placed in a light-

proof, Styrofoam cooler and driven by automobile to the
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Figure 2. Diagram of the experimental apparatus and data acquisition system used to monitor magnetic orientation. The turtle was harnessed in a nylon-lycra
harness and placed in a water-filled arena that was surrounded by two orthogonally arranged coil systems. Computer-controlled power supplies located in a nearby
house altered the magnetic field in the arena so that it replicated a magnetic field found at the northeastern boundary of the North Atlantic gyre. The computer also
monitored the direction that the turtle swam (adapted from [11]).
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laboratory for experiments. During the brief (approx. 5 min) drive,

turtles were presumably exposed to unnatural magnetic fields

associated with the vehicle, but once at the testing site, the cooler

was kept in a location free from magnetic distortions. Turtles

remained in complete darkness in the local magnetic field until

testing (which typically occurred between 3 and 9 h later). Each

animal was used only once for a single experiment and then

released later the same night.

(d) Magnetic orientation behaviour
In magnetic orientation experiments, turtles from all three treat-

ment groups were subjected to a magnetic field replicating one

found along their migratory route near the coast of Portugal. Pro-

cedures are described in detail elsewhere [11,12,17]. Briefly, each

hatchling was placed into a nylon-lycra harness that encircled the

turtle’s carapace without impeding swimming [18]. The turtle

was then tethered by a monofilament line to an electronic track-

ing system in the centre of a water-filled, circular arena that was

91.4 cm in diameter and filled with water to a depth of about

40 cm (figure 2). The tracking system consisted of a graphite

tracker arm attached to a digital encoder at the top of a post

mounted in the centre of the arena. The tracker arm was free to

rotate 3608 in the horizontal plane; hatchlings were able to

swim in any direction, but were restrained to a circle with a

radius of about 35 cm and were unable to contact either the

outer edge of the arena or the central post. The digital encoder

was wired to a computer in a nearby building. The computer

recorded the direction that each turtle swam. The orientation

arena was covered with a plywood lid (1.9 cm thick) that could

be opened or closed as needed. The lid was painted black.

During all experiments, it was closed and covered with four

layers of black plastic sheeting that hung down over the sides

of the arena to prevent light leaks.

The orientation arena was surrounded by two magnetic coil

systems arranged orthogonally (figure 2). Each was a Merritt

4 coil system [19]. The first coil (228.6 cm on a side) was aligned

along the north–south axis of the ambient magnetic field and

was used to control the field’s horizontal component. The

second (251.5 cm on a side) controlled the vertical field component.

Each coil was powered by a computer-controlled power supply.

Custom software enabled us to control the electrical current

through each coil, and thus to reproduce the magnetic field that

exists at any location in the Atlantic Ocean. To avoid field distor-

tions from buildings or electrical wiring, the coil and arena were

placed outdoors in an area free of magnetic distortions.
During experiments (see below), hatchlings were exposed to a

magnetic field that replicated one found at the northeast boundary

of the North Atlantic Subtropical Gyre (44.58 N, 208 W). The field

had an inclination angle of 60.18 and a total intensity of 49.1 mT

(measured with a tri-axial fluxgate magnetometer: Applied

Physics Systems model 520). The field parameters were based on

estimates provided by the International Geomagnetic Reference

Field model, version 2000, for July, 2005, the month when the

experiments began.

Experiments were conducted between 20.30 and 02.00,

the time when most loggerheads emerge from their nests and

enter the sea [20]. Prior to each trial, the magnetic coils were

turned off so that turtles began each trial in the local magnetic

field. A light-emitting diode (LED; peak l ¼ 520 nm) located on

the eastern side of the arena was illuminated. A hatchling was

then placed in the harness and allowed to swim in the tank.

Healthy hatchlings swim vigorously towards light after emerging

from their nests; thus, the hatchling’s swimming response verified

that the animal was behaviourally competent [11,17]. Those few

turtles that failed to swim towards the LED were replaced with

other individuals, prior to the start of the trial.

Each hatchling was permitted to swim towards the light in

the local magnetic field for 10 min. After this time, the LED

was turned off and the coils were simultaneously turned on to

replicate the magnetic field described above. Turtles were given

3 min to acclimatize to the new field and to swimming in dark-

ness. The computer then recorded the hatchling’s heading

every 10 s for 5 min. The turtle’s mean heading was calculated

by averaging all data points collected during this 5 min trial.

No more than four turtles from any one nest were tested. Each

hatchling was tested a single time and released later that night.

For each of the three treatment groups, Rayleigh tests [21]

were used to determine whether turtles were significantly

oriented as a group. Distributions from the three groups were

compared using a Mardia–Watson–Wheeler test [21].

(e) Wave orientation tests
In principle, the altered magnetic field during incubation might

have produced behavioural deficits unrelated to magnetorecep-

tion. We therefore used a second behavioural assay to determine

whether turtles in both groups could respond appropriately to

non-magnetic cues. Previous work has demonstrated that hatchl-

ings swim directly into waves when they leave the beach, a

response that guides turtles away from shore and towards the

open ocean [22–25]. Additionally, turtles determine wave
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Figure 3. Diagram of the wave simulator used to test the responses of turtles
to orbital movements associated with small ocean waves. A motor turned a
belt, which rotated a wheel, in turn driving a second belt attached to two
identical rotating aluminium arms. A vertical post attached to the arms
moved a hatchling (suspended in a cloth harness at the bottom of the
post) through a series of orbital movements. An infrared video camera
mounted on the post was used to monitor the hatchling’s turning behaviour
when it was subjected to motion simulating waves approaching from the
turtle’s right (as shown) or left (adapted from [26]).
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direction by monitoring the circular patterns of movements that

occur as waves propagate [26,27]. A turtle swimming steadily

into oncoming waves will experience forces pushing it in a particu-

lar sequence of directions: upward, backward, downward and

forward in a circle [23,26]. Similarly, if waves approach the turtle

from its right, then the turtle will be moved to its left, down, to

its right and then up again in a circle. In the latter case, turtles

respond by turning to the right until oriented into the waves [26].

This ability was demonstrated in the laboratory using a

‘wave simulator’, a machine that reproduces the circular patterns

of movement that occur as waves propagate (figure 3) [26].

Turtles can be aligned on the simulator so that they experience

the motion associated with swimming in different directions

relative to wave movement. Surprisingly, turtles act out their

swimming behaviour when suspended on the simulator in air;

moreover, when not aligned with the simulated waves, they

attempt to turn until they are [26,28].

In this study, hatchlings were tested on a wave simulator

(figure 3) with circular movements that replicated those produced

by typical waves along the east coast of Florida during summer

(radius¼ 0.156 m; period ¼ 5 s) [26]. Prior to a trial, each hatchling

was allowed to swim in water for at least 10 min to ensure that it

was in the behavioural state in which it would readily respond to

waves [26]. Next, each hatchling was placed in a nylon-lycra har-

ness, which was attached to the simulator. The turtle was then

subjected to circular movements simulating waves approaching

from either its left or right side. The direction of orbital movement

was reversed after each trial by reversing the direction of the motor;

thus, half of the turtles were exposed to simulated waves from the

right and half to simulated waves from the left. All trials were

videotaped for later analysis.

Because hatchling turtles use their rear flippers as rudders

when turning, we monitored turning behaviour on the wave
simulator by observing extension of the rear flippers, as in pre-

vious experiments [26,28]. On the simulator, hatchlings attempt

to turn left by extending their left rear flipper and attempt to

turn right by extending their right rear flipper. During analysis

of the videotaped trial, each hatchling was given a 1 min adjust-

ment period after the simulator was turned on; the turtle’s rear

flipper extension was then analysed for the next 3 min.

For both groups of turtles (i.e. those that developed in the altered

field and those that developed in the natural field), the time spent

turning either left or right in response to each of the two simulated

wave conditions was compared using a Wilcoxon signed-rank test.

The time spent turning either left or right in response to these

same wave conditions was then compared between treatment

groups using Mann–Whitney U-tests.

( f ) Sea-finding behaviour
As an additional check for non-specific effects of the magnetic

treatment, we also investigated whether development in an altered

magnetic field influenced the ability of hatchling turtles to find the

sea after emerging from their nests. Sea-finding in hatchlings is a

robust behaviour in which the newly emerged turtles quickly

crawl down the beach and enter the ocean. Visual cues, including

light reflecting off the sea, guide turtles to the water [29].

All sea-finding trials were conducted between 21.00 and

00.30, a period during which most loggerhead hatchlings

emerge from their nests naturally [20]. Hatchlings were drawn

from four nests with magnets around them and four control

nests surrounded by aluminium bars; four to five hatchlings

from each nest were tested. Hatchlings awaiting testing were

kept in lightproof, Styrofoam coolers during the trials. A small

amount of moist sand was added to the cooler before the trials

to stimulate turtle activity.

To test sea-finding behaviour, a single hatchling was placed at

the centre of a 15 m diameter circle inscribed in the sand on the

natal beach. Each turtle was tested only once and was released

facing north, west, south or east; release directions were used in

sequence so that equal numbers of hatchlings were released

facing each direction. After release, observers retreated from the

turtle as far as possible without losing sight of it. As the turtle

began to crawl, its progress was monitored visually and the bear-

ing at which the turtle crossed the circle’s circumference was

recorded with a digital compass (Autohelm personal compass,

Nautech Limited, UK). The range of bearings that led towards

the ocean from the circle’s centre was approximately 408–808.
Rayleigh tests were used to determine whether turtles from

each group were significantly oriented [21]. The distributions

from the two groups were compared using a Watson U2-test [21].
3. Results
(a) Magnetic orientation behaviour
As in previous experiments [11,12], hatchlings that developed

in the natural ambient magnetic field responded to a field

replicating one in the northeastern gyre by swimming approxi-

mately south (figure 4). This direction is consistent with the

migratory path of the turtles in this geographical area [9,10].

Turtles that developed in natural nests were significantly

oriented (Rayleigh test, r ¼ 0.42, n ¼ 18, p , 0.05) with a

mean angle of 2168. Similarly, turtles from nests surrounded

by non-magnetic aluminium bars were significantly oriented

(Rayleigh test, r ¼ 0.39 n ¼ 23, p , 0.05) with a mean angle of

1678. By contrast, turtles that developed in altered magnetic

fields had orientation that was statistically indistinguisha-

ble from random (Rayleigh test, r ¼ 0.17; n ¼ 29 p ¼ 0.42). The

Mardia–Watson–Wheeler test [21] indicated that significant
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Figure 4. Orientation of hatchlings exposed to a magnetic field that exists near the northeastern boundary of the North Atlantic subtropical gyre. The location where
the field exists is indicated by the black dot on the map. ‘Natural nests’ indicate headings from turtles that incubated in undisturbed nests; ‘control nests (aluminium
bars)’ depict headings from turtles that incubated in nests surrounded by non-magnetic aluminium bars. ‘Altered field nests’ depict headings from turtles that
incubated in nests surrounded by magnets. In the circular orientation diagrams, each dot represents the mean heading of a single hatchling. The arrow indicates
the mean direction of turtles in the group. The length of the arrow is proportional to the magnitude of the mean vector r, with the radius of the circle corresponding
to r ¼ 1. The shaded sectors inside the circular diagrams represent the 95% CIs for the two groups that were significantly oriented. Turtles that developed in natural
nests were significantly oriented (Rayleigh test, r ¼ 0.42, n ¼ 18, p , 0.05) with a mean angle of 2168. Turtles from nests surrounded by aluminium bars were
also significantly oriented (r ¼ 0.39, n ¼ 23, p , 0.05) with a mean angle of 1678. By contrast, turtles that developed in fields altered by magnets had orien-
tation that was statistically indistinguishable from random (r ¼ 0.17, n ¼ 29, p ¼ 0.42). Data are plotted relative to magnetic north, which is indicated by 08.
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differences existed among the three groups (W ¼ 11.58, p ,

0.05). Pairwise comparisons indicated that the orientation of

turtles raised in the altered field differed from the orientation

of turtles from natural nests (W ¼ 8.51, p ¼ 0.014). The orien-

tation of the altered field group also differed significantly

from the orientation of turtles from nests surrounded by

aluminium bars (W ¼ 6.59, p ¼ 0.037). No difference existed

between the orientation of turtles from natural nests and those

from the aluminium bar group (W ¼ 1.86, p ¼ 0.395).
(b) Orientation to wave orbital movements
In tests involving orientation responses to wave orbital move-

ments, no differences were detected in the behaviour of

hatchlings that developed in nests surrounded by magnets
and those that developed in nests surrounded by aluminium

bars (table 1). When simulated waves approached the turtles’

left side, both groups of hatchlings spent significantly more

time turning left into the perceived oncoming wave than

turning right (Wilcoxon signed-rank test; natural magne-

tic field group: n ¼ 25, W ¼ 323.0, p , 0.01; altered magnetic

field group: n ¼ 25, W ¼ 325.0, p , 0.01). The responses of

the two groups were statistically indistinguishable (Mann–

Whitney U; time turning left: U ¼ 306.0, p ¼ 0.91; time turning

right: U ¼ 297.0, p ¼ 0.77).

Similarly, when simulated waves approached from the

turtles’ right side, both groups spent significantly more

time turning right than left (Wilcoxon signed-rank test; natu-

ral magnetic field group: n ¼ 25, W ¼ 2325.0, p , 0.01;

altered magnetic field group: n ¼ 25, W ¼ 2325, p , 0.01).



Table 1. Time (mean+ s.d.) turtles spent turning in the different wave conditions on the wave simulator.

treatment
groups

waves approach hatchling’s left side waves approach hatchling’s right side

time spent
turning left
(s)

time spent
turning right
(s)

within-individual
comparisonsa

time spent
turning left
(s)

time spent
turning right
(s)

within-individual
comparisonsa

local magnetic

field

142.9+ 37.8 4.8+ 11.0 W ¼ 323.0

p , 0.01

3.4+ 6.9 145.5+ 38.0 W ¼ – 325.0

p , 0.01

altered magnetic

field

151.3+ 21.9 2.9+ 5.4 W ¼ 325.0

p , 0.01

8.0+ 12.7 146.1+ 26.7 W ¼ – 325

p , 0.01

between-group

comparisonsb

U ¼ 306.0

p ¼ 0.91

U ¼ 297.0

p ¼ 0.77

U ¼ 233.5

p ¼ 0.12

U ¼ 288.0

p ¼ 0.64
aComparison of the time that turtles in each wave simulator condition spent turning right or left using Wilcoxon signed-rank tests.
bComparison of the time that turtles in each treatment group spent turning right and left in each wave simulator condition using Mann – Whitney U-tests.
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Responses of the two groups were statistically indistinguishable

(Mann–Whitney U; time turning left: U ¼ 233.5, p¼ 0.12; time

turning right: U ¼ 288.0, p ¼ 0.64).

(c) Orientation towards the sea
Hatchlings from the two groups had nearly identical sea-find-

ing behaviour. Hatchlings that incubated in nests surrounded

by aluminium bars oriented significantly as a group towards

the east-northeast (Rayleigh test; mean angle ¼ 568, r ¼ 0.97,

n ¼ 31, p , 0.001). Hatchlings that incubated in nests sur-

rounded by magnets were also oriented significantly as a

group in the same east-northeastward direction (Rayleigh

test; mean angle ¼ 558, r ¼ 0.97, n ¼ 25 p , 0.001). The orien-

tation of both groups was directed towards the ocean and the

two distributions were statistically indistinguishable (Watson

U2 ¼ 0.056, p . 0.50).
4. Discussion
Our results provide evidence that the magnetic environment

in which hatchling loggerhead turtles incubate affects sub-

sequent magnetic navigation behaviour. When exposed to a

magnetic field that resembles one at the northeastern bound-

ary of the circular migratory route, turtles that developed in a

natural magnetic field oriented southward as in previous

experiments [11,12]. By contrast, hatchlings that developed

in an altered magnetic environment had orientation that

was statistically indistinguishable from random (figure 4).

Turtles that developed under distorted and normal mag-

netic environments did not differ in their responses to two

non-magnetic orientation cues that are critical to hatchlings

[26,29]: (i) orbital movements associated with ocean waves

(table 1), and (ii) visual cues that underlie sea-finding behav-

iour. These findings imply that the effects of developing in a

distorted magnetic environment are specific to behaviour

involving magnetoreception, rather than reflecting more

general developmental, neural or behavioural deficits.

The ability of hatchling loggerheads to use regional mag-

netic fields as navigational markers appears to be an adaptive

mechanism that helps turtles advance along their migratory

pathway and avoid straying into water that is lethally cold

[11,12,17]. The failure of hatchlings that developed in an altered
field to orient south, when tested in a regional field that nor-

mally elicits southward swimming, implies that the magnetic

environment in which turtles develop somehow influences

this navigational system. To the best of our knowledge, this is

the first demonstration that the ambient magnetic field present

during early development influences subsequent magnetic

navigation behaviour of neonate migratory animals.

In principle, the field in which turtles develop might

influence subsequent orientation and navigation in several

different ways. One possibility is that incubating in an altered

field prevented turtles from obtaining directional or ‘com-

pass’ information from the geomagnetic field [30,31], but

still allowed them to obtain positional information from it

[11,12]. If so, then young turtles might have been able to

recognize the regional magnetic field used in the experiment

by correctly detecting the magnetic inclination and inten-

sity, but they might have been unable to establish or

maintain the appropriate directional heading because the

magnetic compass had been impaired.

A second possibility is that incubating in an unnatural

field prevented turtles from obtaining positional or ‘map’

information from the Earth’s magnetic field, but without com-

promising the magnetic compass. In this scenario, young

turtles were unable to perceive or recognize the regional field

to which they were exposed, even though they were capable

of maintaining a consistent compass heading in any direction.

It is possible, of course, that incubating in the altered field

affected both the compass and ‘map’ of the turtle.

A related but slightly different possibility is that the

responses of turtles to regional magnetic fields are ‘set’ or ‘cali-

brated’ relative to the field in which the turtles develop. In

other words, recognition of specific regional fields might be

encoded in young turtles not in terms of specific values of incli-

nation and intensity [13,17], but instead based on how the

fields at distant sites vary relative to the field at the home

beach. Viewed in this way, the failure of turtles raised in a

field altered by magnets to respond correctly to a regional

field along the migratory route might result not because of a

deficit in magnetoreception per se, but instead because the

unnatural field ensured that the parameters at the distant site

did not differ from those at the natal site by the normal

amounts. Although this idea has some appeal, a potential pro-

blem is that, as the Earth’s field gradually changes, the
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difference between the field at the home beach and the field at

many locations along the migratory path does not remain

constant and instead varies unpredictably (N. F. Putman &

K. J. Lohmann 2011, unpublished data). Nevertheless, the

possibility that responses to regional fields are linked in some

way to the field at the home beach is worth considering.

An additional way that the ontogeny of the magnetic sense

might influence sea turtle navigation is through interactions

between the magnetic compass and other compass systems.

Studies in migratory birds have provided evidence that nestlings

learn relationships between their magnetic and celestial com-

passes, and that these compasses interact during their first

migration [32,33]. Sea turtles, like birds, eventually acquire and

use celestial compasses [34,35], but hatchling turtles, unlike

birds, develop underground and cannot perceive celestial cues

until they leave their nest [36]. In this study, turtles were tested

in darkness and thus had no access to, or experience with, celes-

tial cues. Nevertheless, interactions between the turtle magnetic

compass and other environmental cues have been demonstrated;

for example, hatchlings can initiate headings on the basis of

visual cues or waves, and then transfer the heading to the mag-

netic compass [37]. Similar interactions between magnetic and

celestial compasses are possible as turtles mature.

Although our experiments involved hatchling turtles, the

findings have interesting implications for the navigational

strategies of turtles at other life-history stages. Adult female

sea turtles return to the vicinity of their natal beach to nest

[38,39], though how they navigate back from distant sites

after being away for many years is not known [40]. One

hypothesis is that turtles imprint on the magnetic field of

their natal region and then use this information to return

[41,42]. For this to be true, a turtle’s early experience must

necessarily influence its behaviour as an adult. Although our

results do not directly support or refute this hypothesis, the

finding that the magnetic environment experienced by turtles

during development affects subsequent navigation is broadly

consistent with the idea of early experience affecting the behav-

iour of older turtles. Additional studies will be needed to

determine whether gravid females do indeed use geomagnetic
cues to guide themselves to their natal beaches to nest, as initial

studies suggest [43,44].

A limitation of this study is that it does not reveal how long

the effects of a distorted magnetic environment during incu-

bation persist. In our experiment, hatchlings were tested a

single time on the night that they would have emerged natu-

rally. Although the observed effects might be long lasting or

permanent, it is also conceivable that the effects are transient

and disappear as the turtles mature and gain migratory

experience. Additional studies are needed to resolve this issue.

Finally, our findings have implications for sea turtle conser-

vation. Protective cages constructed of galvanized wire are

commonly placed around sea turtles nests to protect them

from predators [45,46]. At least some of these cages significantly

alter the magnetic field around the incubating clutch [16]. Our

results suggest the possibility that hatchlings developing

under such cages might have compromised navigational

abilities. Similarly, other anthropogenic structures, such as

beachfront condominiums and sea walls, typically contain

steel beams, iron rebar and other metallic materials that distort

the local magnetic field. In some locations, sea turtles preferen-

tially nest in front of these structures [47,48]. Thus, our findings

raise the question of whether hatchlings that develop in such

areas have impaired navigational abilities, and whether anthro-

pogenic magnetic fields represent a previously overlooked

threat to jeopardized populations of sea turtles.

All procedures described herein were approved by the University of
North Carolina, Chapel Hill’s Institutional Animal Care and Use
Committee, as well as the appropriate state and federal government
agencies.
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