37 research outputs found

    Ecological resilience in lakes and the conjunction fallacy

    Get PDF
    There is a pressing need to apply stability and resilience theory to environmental management to restore degraded ecosystems effectively and to mitigate the effects of impending environmental change. Lakes represent excellent model case studies in this respect and have been used widely to demonstrate theories of ecological stability and resilience that are needed to underpin preventative management approaches. However, we argue that this approach is not yet fully developed because the pursuit of empirical evidence to underpin such theoretically grounded management continues in the absence of an objective probability framework. This has blurred the lines between intuitive logic (based on the elementary principles of probability) and extensional logic (based on assumption and belief) in this field

    Spatial and temporal variation in Arctic freshwater chemistry—Reflecting climate-induced landscape alterations and a changing template for biodiversity

    Get PDF
    Freshwater chemistry across the circumpolar region was characterised using a pan-Arctic data set from 1,032 lake and 482 river stations. Temporal trends were estimated for Early (1970-1985), Middle (1986-2000), and Late (2001-2015) periods. Spatial patterns were assessed using data collected since 2001.Alkalinity, pH, conductivity, sulfate, chloride, sodium, calcium, and magnesium (major ions) were generally higher in the northern-most Arctic regions than in the Near Arctic (southern-most) region. In particular, spatial patterns in pH, alkalinity, calcium, and magnesium appeared to reflect underlying geology, with more alkaline waters in the High Arctic and Sub Arctic, where sedimentary bedrock dominated.Carbon and nutrients displayed latitudinal trends, with lower levels of dissolved organic carbon (DOC), total nitrogen, and (to a lesser extent) total phosphorus (TP) in the High and Low Arctic than at lower latitudes. Significantly higher nutrient levels were observed in systems impacted by permafrost thaw slumps.Bulk temporal trends indicated that TP was higher during the Late period in the High Arctic, whereas it was lower in the Near Arctic. In contrast, DOC and total nitrogen were both lower during the Late period in the High Arctic sites. Major ion concentrations were higher in the Near, Sub, and Low Arctic during the Late period, but the opposite bulk trend was found in the High Arctic.Significant pan-Arctic temporal trends were detected for all variables, with the most prevalent being negative TP trends in the Near and Sub Arctic, and positive trends in the High and Low Arctic (mean trends ranged from +0.57%/year in the High/Low Arctic to -2.2%/year in the Near Arctic), indicating widespread nutrient enrichment at higher latitudes and oligotrophication at lower latitudes.The divergent P trends across regions may be explained by changes in deposition and climate, causing decreased catchment transport of P in the south (e.g. increased soil binding and trapping in terrestrial vegetation) and increased P availability in the north (deepening of the active layer of the permafrost and soil/sediment sloughing). Other changes in concentrations of major ions and DOC were consistent with projected effects of ongoing climate change. Given the ongoing warming across the Arctic, these region-specific changes are likely to have even greater effects on Arctic water quality, biota, ecosystem function and services, and human well-being in the future

    Amplifying Signals and avoiding surprises: Potential synergies between ICOS and eLTER at the Water-Climate-Greenhouse Gas nexus

    Get PDF
    Environmental thresholds. tipping points and subsequent regime shifts associated with the water/climate/greenhouse gas nexus pose a genuine threat to sustainability. Both the ongoing forest dieback in Central Europe caused by the extreme droughts of the last years and the effect of global warming on ecosystem functioning have the potential to cause ecological surprise (sensu Lindenmayer et al. 2010) where ecosystems are pushed into new, unexpected and usually undesirable states. Formulating appropriate scientific and societal responses to such regime shifts requires breadth, depth, intensity and duration of environmental, ecological and socio-ecological monitoring. Broad geographic coverage to encompass relevant biophysical and societal gradients, consideration of all appropriate parameters, adequate measurement frequency and long-term, standardized observations are all needed to provide reliable early warnings of severe environmental change, test ecosystem models, avoid double counting in carbon accounting and to reduce the likelihood of undesirable ecological outcomes. This is especially true of events driven by simultaneous changes in climate, the water cycle and human activities. Well-supported, site-based research infrastructures (RIs; e.g., eLTER and ICOS) are essential tools with the necessary breadth, depth, intensity and duration for early detection and attribution of environmental change. Individually, the eLTER and ICOS RIs generate a wealth of data supporting the ecosystem and carbon research communities. Achieving synergies between the two RIs can add value to both communities and potentially offer meaningful insight into the European water-climate-greenhouse gas nexus. The unique insights into processes and mechanisms of ecosystem dynamics and functioning obtained from high intensity monitoring conducted by the ICOS RI greatly increase the likelihood of detecting signals of environmental change. These signals must be placed into the context of their long-term trajectory and potential societal and environmental drivers. The spatially extensive, long-term, multi-disciplinary monitoring conducted at LTER sites and LTSER platforms under the umbrella of the eLTER programme can provide this context. Here, we outline one potential roadmap for achieving synergies between the ICOS and eLTER RIs focussing on the value of co-location for improved understanding of the water/climate/greenhouse gas nexus. Based on data and experiences from intensively studied research sites, we highlight some of the possibilities for reducing the likelihood of ecological surprise that could result from such synergies.Peer reviewe

    Modelling phosphorus in Lake Simcoe and its subcatchments: scenario analysis to assess alternative management strategies

    Get PDF
    In Lake Simcoe (Ontario, Canada), anthropogenic phosphorus (P) loads have contributed to increased algal growth, low hypolimnetic dissolved oxygen concentrations, and impaired fish reproduction. Management targets to control eutrophication require an ambitious programme to reduce P loads to the lake. Remediation strategies rely upon an improved understanding of P sources and assessment of the effectiveness of different control options. Here we present an application of the integrated catchment model for phosphorus (INCA-P) to examine P sources across the Lake Simcoe watershed and simulate in-lake P concentrations. This is the first application of INCA-P to a complex watershed of this nature and the first to include a lake component. We evaluated a set of management actions to simulate anticipated effects of P reduction strategies on in-lake total phosphorus (TP) concentrations. The INCA-P scenarios show the difficulty of achieving large-scale reductions from the watershed, given the low rates of P export; however, the study shows that a multifaceted strategy, including fertilizer reduction, addition of buffer strips, more stringent controls on sewage treatment plant effluent, and reduced deposition of P to the lake surface, could achieve a 25% reduction in lake-water TP concentrations and produce TP close to the target of 0.01 mg L−1

    Tradeoffs and synergies in wetland multifunctionality: A scaling issue

    Get PDF
    Wetland area in agricultural landscapes has been heavily reduced to gain land for crop production, but in recent years there is increased societal recognition of the negative consequences from wetland loss on nutrient retention, biodiversity and a range of other benefits to humans. The current trend is therefore to re-establish wetlands, often with an aim to achieve the simultaneous delivery of multiple ecosystem services, i.e., multifunctionality. Here we review the literature on key objectives used to motivate wetland re-establishment in temperate agricultural landscapes (provision of flow regulation, nutrient retention, climate mitigation, biodiversity conservation and cultural ecosystem services), and their relationships to environmental properties, in order to identify potential for tradeoffs and synergies concerning the development of multifunctional wetlands. Through this process, we find that there is a need for a change in scale from a focus on single wetlands to wetlandscapes (multiple neighboring wetlands including their catchments and surrounding landscape features) if multiple societal and environmental goals are to be achieved. Finally, we discuss the key factors to be considered when planning for re-establishment of wetlands that can support achievement of a wide range of objectives at the landscape scale

    Phosphorus dynamics across intensively monitored subcatchments in the Beaver River

    Get PDF
    We report results from a spatially intensive monitoring and modelling study to assess phosphorus (P) dynamics in the Beaver River, a tributary of Lake Simcoe, Ontario. We established multiple monitoring stations (9 flow and 24 water quality stations) from headwaters to near the outflow that were operated for 2 field seasons, complementing longer term data from a flow monitoring site and water chemistry monitoring site. We applied the Branched-INCA-P model, which allows fully distributed simulations supported by highly distributed monitoring data. Using spatially distributed data helped better understand variable P and sediment dynamics across the catchment and identify key model uncertainties and uncertainties related to catchment P management. Measured and modelled total P concentrations often exceeded provisional water quality thresholds in many areas of the catchment and highlight the value of studying water quality across multiple subcatchments rather than at a single site. Total P export coefficients differed widely among subcatchments, ranging from 2.1–21.4 kg km-2 y-1 over a single year. Export coefficients were most strongly (negatively) related to the proportion of wetland cover in subcatchments. The INCA-P model captured spatial variation in P concentrations relatively well, but short-term temporal variability in the observed data was not well simulated across sites, in part due to unmodelled hydrological phenomena including beaver activity and unknown drivers of P peaks that were not associated with hydrological events

    Is the water footprint an appropriate tool for forestry and forest products: The Fennoscandian case

    Get PDF
    The water footprint by the Water Footprint Network (WF) is an ambitious tool for measuring human appropriation and promoting sustainable use of fresh water. Using recent case studies and examples from water-abundant Fennoscandia, we consider whether it is an appropriate tool for evaluating the water use of forestry and forest-based products. We show that aggregating catchment level water consumption over a product life cycle does not consider fresh water as a renewable resource and is inconsistent with the principles of the hydrologic cycle. Currently, the WF assumes that all evapotranspiration (ET) from forests is a human appropriation of water although ET from managed forests in Fennoscandia is indistinguishable from that of unmanaged forests. We suggest that ET should not be included in the water footprint of rain-fed forestry and forest-based products. Tools for sustainable water management should always contextualize water use and water impacts with local water availability and environmental sensitivity

    Leveraging research infrastructure co-location to evaluate constraints on terrestrial carbon cycling in northern European forests

    Get PDF
    Integrated long-term, in-situ observations are needed to document ongoing environmental change, to “ground-truth” remote sensing and model outputs and to predict future Earth system behaviour. The scientific and societal value of in-situ observations increases with site representativeness, temporal duration, number of parameters measured and comparability within and across sites. Research Infrastructures (RIs) can support harmonised, cross-site data collection, curation and publication. Integrating RI networks through site co-location and standardised observation methods can help answers three questions about the terrestrial carbon sink: (i) What are present and future carbon sequestration rates in northern European forests? (ii) How are these rates controlled? (iii) Why do the observed patterns exist? Here, we present a conceptual model for RI co-location and highlight potential insights into the terrestrial carbon sink achievable when long-term in-situ Earth observation sites participate in multiple RI networks (e.g., ICOS and eLTER). Finally, we offer recommendations to promote RI co-location

    Variability in organic carbon reactivity across lake residence time and trophic gradients

    Get PDF
    The transport of dissolved organic carbon from land to ocean is a large dynamic component of the global carbon cycle. Inland waters are hotspots for organic matter turnover, via both biological and photochemical processes, and mediate carbon transfer between land, oceans and atmosphere. However, predicting dissolved organic carbon reactivity remains problematic. Here we present in situ dissolved organic carbon budget data from 82 predominantly European and North American water bodies with varying nutrient concentrations and water residence times ranging from one week to 700 years. We find that trophic status strongly regulates whether water bodies act as net dissolved organic carbon sources or sinks, and that rates of both dissolved organic carbon production and consumption can be predicted from water residence time. Our results suggest a dominant role of rapid light-driven removal in water bodies with a short water residence time, whereas in water bodies with longer residence times, slower biotic production and consumption processes are dominant and counterbalance one another. Eutrophication caused lakes to transition from sinks to sources of dissolved organic carbon. We conclude that rates and locations of dissolved organic carbon processing and associated CO2 emissions in inland waters may be misrepresented in global carbon budgets if temporal and spatial reactivity gradients are not accounted for
    corecore