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Abstract 39 

There is a pressing need to apply stability and resilience theory to environmental management in such 40 
a way as to restore degraded ecosystems effectively and to mitigate the effects of impending 41 
environmental change. Lakes represent excellent model case studies in this respect and have been 42 
used widely to demonstrate theories of ecological stability and resilience that are needed to underpin 43 
preventative management approaches. However, we argue that this approach is not yet fully developed 44 
because the pursuit of empirical evidence to underpin such theoretically-grounded management 45 
continues in the absence of an objective probability framework. This has blurred the lines between 46 
intuitive logic (based on the elementary principles of probability) and extensional logic (based on 47 
assumption and belief) in this field. 48 

 49 

Introduction[1] 50 

A systematic bias in reasoning exists within ecological resilience research resulting from the conditional 51 
selection of ecosystems for study that exhibit desirable responses1. This issue extends to the 52 
application of resilience approaches in general and must be addressed to avoid the separation of 53 
theoretical application from mechanistic understanding of the system of interest. Here we explore this 54 
issue using lakes as a model system. The issue can be conceptualised generally using a probability 55 
framework that is commonly applied in social psychology: the conjunction rule2. This rule states that the 56 
probability of two events occurring together cannot exceed the probability of either of the respective 57 
single events. A conjunction fallacy occurs when it is stated that the co-occurrence of two events is 58 
more likely than either event alone. This can happen when basic laws of probability have been ignored, 59 
with conclusions being reached via simple heuristics that are derived from beliefs rather than robust 60 
probabilistic assessment.  61 

In lakes, indicators have been developed to provide evidence of the occurrence of sudden ecological 62 
reorganisations, or regime shifts, and have been used to underpin assessments of changes in 63 
ecological stability (e.g. Carpenter et al., 2011)3. However, in many cases this approach relies on 64 
assumptions about the form of the regime shift (i.e. an underlying “model”) and faith in this underlying 65 
model may be misplaced in the absence of systematic quantitative approaches2. [10] Specifically, 66 
evidence of the occurrence of these phenomena is limited by the existence of multiple underlying 67 
models representing possible real-world pressure-response relationships operating in lakes; be they 68 
linear, non-linear or hysteretic in nature4 [11].  69 

A fallacy occurs when an assumption is made that sudden ecosystem-scale change has occurred in 70 
response to changes in an environmental stressor. Such an assumption is commonly presented to 71 
support reports that statistical signatures of reduced stability have been detected prior to a profound 72 
ecological change. In the context of applying the conjunction rule to these systems, the probability of 73 
each of these responses occurring individually, and the overall probability of the conjunction of those 74 
responses occurring together can be calculated to provide a level of statistical certainty with which 75 
preventative management approaches5 could be underpinned. In reality, there is a degree of uncertainty 76 
about whether either of these phenomena can be detected and this has led to contentious 77 
methodological debates (e.g., Wang et al., 2015)6.  78 

We argue that overconfidence in the reporting of these phenomena limits our ability to perform 79 
preventative, ‘resilience-based’ management.  We draw on the experiences of the research community 80 
working in this field to demonstrate these underlying issues and propose an alternative approach to 81 
evaluating available evidence. We propose that the next phase of research in this potentially 82 
transformative field should be grounded in robust assessments of probability coupled with an a priori 83 
understanding of ecological processes.  84 

Ecological stability and resilience in lakes 85 

Ecological stability theory is a major contemporary theme in ecology and environmental management, 86 
and has stimulated much debate. Two key aspects of the theory, referred to by Grimm et al. (1992)7 as 87 
resistance and resilience, describe the tendency of species, communities, meta-communities or 88 
ecosystems to depart from established relationships with their biological and physical environments, 89 
and their capacity to return to pre-defined baseline conditions in response to perturbations. These 90 
departures can be profound, resulting in the reorganisation of communities in response to the 91 
breakdown of internal feedback mechanisms at the ecosystem scale. Within ecological resilience 92 
theory, this latter phenomenon is described as a regime shift. Regime shifts can be either smooth 93 
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(linear), non-linear (threshold) or discontinuous (hysteresis, critical) transitions8,9. Lees et al. (2007)9 94 
proposed that, to confirm the occurrence of a regime shift, a reorganisation that produces a novel and 95 
stable ecosystem must be detectable across multiple physical and biological components. Quantifiable 96 
terms relating to regime shifts include the critical threshold:. the point on the pressure axis at which the 97 
system shifts, and the transition: the period over which the switch between stable states occurs10.  98 

Ecological resilience theory suggests that discontinuous regime shifts may be preceded by subtle 99 
changes in ecological behaviour that can be detected using quantifiable indicators, thus providing useful 100 
early warning of impending transitions. For example, an increase in the variance or autocorrelation of 101 
phytoplankton biomass, due to phenomena known as critical slowing down (CSD) or flickering, may be 102 
expected to precede the well documented transition between phytoplankton dominated conditions and 103 
macrophyte dominated conditions in shallow lakes. Put simply, CSD is characterised by a reduction in 104 
the speed of ecological recovery after a disturbance as an ecosystem approaches a critical threshold, 105 
and flickering results from the alternation between stable ecological states following perturbations6,11,12. 106 
Frameworks for detecting changes in ecological stability5 and for the use of statistically derived early 107 
warning indicators13-15 (EWIs) have been developed for predicting regime shifts. Currently, the 108 
performance of these frameworks has been evaluated, mainly using simulated or experimental data15,16.  109 

Lakes are particularly important model ecosystems with which to examine the aforementioned 110 
phenomena given that they represent ‘aquatic islands’ that are relatively contained, easily quantified 111 
and manipulated, and exhibit a vast array of ecological responses to well-defined gradients of multiple 112 
and interacting pressures. These pressures include eutrophication, acidification, and climate change. 113 
Recent tests using long-term lake monitoring data have indicated low levels of agreement between 114 
EWIs and statistically defined sudden ecological change. Burthe et al. 201517 highlight that this lack of 115 
coherence may arise due to insufficient knowledge of the causes of sudden changes in ecological 116 
indicators that occur in long-term monitoring data and their relation to regime shifts. One significant 117 
weakness in this approach is that the form and rate of regime shifts are very difficult to quantify, even 118 
though they may dictate whether or not CSD or flickering may be expected to occur. Using the 119 
terminology of the conjunction rule, this underlying model is flawed. Capon et al. (2015)18 reviewed the 120 
evidence available for regime shifts in freshwater ecosystems and concluded that many of the studies 121 
purporting to demonstrate this phenomenon fail to do so. Of the 135 studies analysed, few met all of 122 
the criteria proposed by Lees et al. (2006)9 to confirm a regime shift. This suggests that regime shifts 123 
are less common in nature than the abundant literature would suggest. Ultimately, these reports of 124 
regime shifts based on unwarranted extensional reasoning about the consequences of observed EWIs 125 
support the widespread occurrence of conjunction fallacies in this field, with the occurrence of regime 126 
shifts having been widely reported despite a lack of robust probabilistic evidence.  127 

Predicting regime shifts in real world systems  128 

If we are to improve our capacity to estimate the probability of regime shifts and changes in ecosystem 129 
stability preceding them, we must first examine our underlying model and our capacity to quantify its 130 
individual components. We can demonstrate this approach by considering lake ecosystems, which have 131 
been widely used as model systems for the development and application of ecological resilience 132 
theory17,20 and EWIs21,22.  133 

[FIGURE 1] 134 

While EWIs have been applied with apparent success in small-scale and whole-lake experimental 135 
settings, significant caveats have been identified regarding their use in real-world systems. Authors 136 
have stated that EWIs may occur before specific types of regime shifts only23,24, potentially including 137 
both critical and non-critical transition types25, and they may not be exclusive signals of critical 138 
transitions26. So, failure to observe an EWI may arise if the drivers of a regime shift are, themselves, 139 
inherently unpredictable (e.g. noise-induced transitions12), or as a result of methodological issues such 140 
as the resolution of monitoring data and/or the selection of (rolling) time windows within which EWIs are 141 
calculated (Fig 1). When applied to monitoring data from lakes with reported regime shifts, the predictive 142 
success of EWIs has been reported to be only at best about 50%27. To achieve acceptable levels of 143 
confidence in their application, any reliable use of EWIs needs to be embedded within a priori 144 
knowledge of system-specific ecological mechanisms that underlie change26; this limits wide scale 145 
practical applications considerably17. Litzow and Husnicker (2016)4 propose that uncertainty is a result 146 
of applying the theory incorrectly through flawed logic in the underlying model and introduced a 147 
systematic approach to assess pressure-response forms to address this. Specifically, they 148 
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demonstrated that success rates for EWIs could be significantly improved when assessments are made 149 
using only case studies which exhibited hysteresis in the pressure-response model. [11]    150 

By considering the underlying processes that drive change in EWIs more generally, we can begin to 151 
understand important limitations in their current application. All EWIs are likely to be inherently variable 152 
within a given ecosystem state, even one that is a long way from an impending transition, due to 153 
transient ecological dynamics. For example, the widely ranging variance in phytoplankton biomass and 154 
submerged macrophytes28 exhibited over the long-term by apparently stable lakes makes it difficult to 155 
identify changes that are indicative of a regime shift (Fig 1). Changes in EWIs can only be judged to be 156 
“significant” if they vary outside of the range that is found under typical baseline conditions or in a 157 
parallel and statistically well-defined control system13. Such assessments require time series data of 158 
sufficient frequency and duration with which any departure from baseline conditions can be adequately 159 
quantified.  160 

Decisions must be made regarding ecologically relevant timescales over which loss of stability can be 161 
assessed29. Our definition of “sudden” change, which underlies the definition of discontinuous regime 162 
shifts, is perhaps better judged on a scale of organismal and community turnover times, rather than 163 
calendar dates or funding timelines. For example, Pace et al. (2016)5 consider the onset of a 164 
phytoplankton bloom to be a short-term (i.e. days to months) ecological event that was preceded by a 165 
change in EWIs from baseline. In shallow lakes, palaeolimnological records30 and long-term monitoring 166 
data31 show that a regime shift, characterised by the complete loss of submerged plants, can be 167 
preceded by decades to centuries of change in community composition that culminates in the 168 
dominance of a few nutrient tolerant species (i.e. Potamogeton crispus, P. pusillus, P. pectinatus and 169 
Zanichellia palustris) before they disappear completely. In contrast to the duration of a typical 170 
experiment (months to years), the plant loss regime shift described above demonstrates a mean 171 
transition time from a non-eutrophic macrophyte flora to the penultimate community state of about 100 172 
years, and from the penultimate state to plant loss of about 20 years. Similarly, studies of contemporary 173 
monitoring data that quantify the responses in fish and macrophyte communities to catchment 174 
phosphorus loading abatement in shallow lakes often report gradual time scales of response of the 175 
order of decades32,33. In this context, it is difficult to distinguish between categories of regime shifts or 176 
to establish clear timelines across which EWIs would be expected to respond. To address this, there is 177 
a need to develop more systematic definitions of regime shifts that occur in nature and to use these as 178 
a framework within which changes in indicators of ecological stability can be assessed. 179 

Despite the fact that regime shifts are ecosystem-scale phenomena, ecological indicators used for 180 
calculating EWIs are often simple state variables that may not reflect ecosystem scale processes34. The 181 
selection of suitable indicators is not trivial, considering that complex ecosystem dynamics can amplify 182 
or dampen EWIs in specific variables35. The components of an ecosystem that are most likely to exhibit 183 
the behaviours that underpin EWIs will depend upon the type of regime shift and on the underpinning 184 
ecological mechanisms. Retrospective analyses of long-term monitoring data from lakes in which 185 
regime shifts have been observed and defined can be used to test the sensitivity of EWIs27. For the 186 
development of monitoring programmes designed to predict unforeseen regime shifts, however, the 187 
identification of suitable EWIs from the suite available is challenging. This selection must be combined 188 
with a priori mechanistic understanding of the relevant ecological processes, feedback mechanisms 189 
and regime shifts that occur across a wide range of pressure scenarios, lake types and timescales. That 190 
is, we must develop more detailed underlying models, based on comprehensive understanding of the 191 
ecosystem and its responses to defined environmental stressors. These models can then be used to 192 
support diagnosis of time-varying ecosystem-scale changes in indicators of stability needed to quantify 193 
the probability of regime shifts based on departure from baseline conditions using EWIs36,37.  194 

Learning from Experiments 195 

The probabilities of observing both detectable changes in EWIs and subsequent regime shifts can best 196 
be estimated by the statistical analysis of data from controlled experiments. Such estimates or 197 
probabilities could be used to infer the likelihood of observing these phenomena in real world monitoring 198 
data. Most experimental studies focusing on resilience and EWI development have assessed relatively 199 
short-term responses to perturbations (i.e. weekly to monthly resolution) using high frequency data. The 200 
advent of high-frequency monitoring systems (at hourly to daily level resolution) in lakes provides lake 201 
ecologists with an impressive capacity to detect subtle and rapid changes in ecological indicators in 202 
response to perturbations. As next generation monitoring systems are developed and/or improved (e.g. 203 
remote sensing approaches including multi-parameter monitoring buoys), our detection power will also 204 
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improve. In contrast to this, we draw attention to the vast legacy of experimental studies that have 205 
collected lower frequency monitoring data. These low-frequency experiments represent an untapped 206 
resource with which non-stationary behaviour in ecosystems can be examined using the statistical tools 207 
developed as EWIs in response to a controlled perturbation or otherwise.   208 

One criticism of short-term experiments is that it is difficult to conclude that a persistent regime shift has 209 
occurred, although they do provide important evidence of short-term dynamics in ecological responses 210 
at high temporal frequency. With a few exceptions, mesocosm experiments span periods of only 3-12 211 
months38 (Fig 2). So, longer term changes including potential regime shifts, and changes in ecological 212 
behaviour preceding (and following) them, are often difficult to assess. Nevertheless, they offer 213 
invaluable insights into short-term effect, return, and recovery rates following perturbations. Tightly 214 
controlled experiments in which regime shifts are achieved maintain a powerful approach to examining 215 
and quantifying the performance of EWIs and responses in ecological stability, more generally. 216 
Unfortunately, although an impressive legacy dataset exists documenting ecological responses 217 
following manipulation of nutrient cycling or food-web structure, this evidence has been poorly utilised 218 
in the context of ecological resilience in lakes. 219 

[FIGURE 2] 220 

Here we provide an example of the use of a short-term mesocosm experiment39 to examine ecological 221 
resilience in lakes and some misgivings in the context of the conjunction rule. Mesocosms were 222 
subjected to contrasting nitrogen (N) loading during a 9 month shallow lake experiment that led to the 223 
complete loss of submerged macrophytes at high N loading (Fig 2), a well-established regime shift 224 
known to occur in shallow lakes. There were no apparent EWI signals or trends when the macrophytes 225 
started to decline in the high N loaded mesocosms. EWI values from the treatment mesocosms were 226 
found to be both higher and lower than the control mesocosms. When one considers the general 227 
treatment effects, it is apparent that EWIs were significantly different across the treatments and that an 228 
interaction between treatment and time was reported. However, the results provide no conclusive 229 
evidence of an increase in EWIs prior to the regime shift in the high nutrient loading treatment. In 230 
general, we observed more stable conditions under the highest N loading treatment, which appears to 231 
contradict the increase in variance expected when CSD occurs prior to a regime shift. In this example 232 
it is impossible to determine the form of the regime shift and so our underlying model, which 233 
hypothesises the occurrence of CSD preceding the demise of the macrophytes, may be unfounded, as 234 
in other similar experimental studies.    235 

Few ecosystem scale experiments have been conducted to test the hypothesis that CSD can be 236 
detected before a regime shift. The most comprehensive study to date involved the detection of 237 
responses across a range of indicators in a treatment lake relative to a control lake, following 238 
manipulation of the fish community from planktivore- to piscivore dominance3,14,35,30,41. Thresholds in 239 
some of these indicator variables were reported more than a year before the transition to piscivore 240 
dominance was complete, providing evidence to support CSD. However, evidence also existed for 241 
similar fluctuations in EWIs following the regime shift, suggesting on-going longer-term processes that 242 
are not easily explained. While this experiment provided a rich and detailed dataset with at least daily 243 
sampling resolution for a range of variables, there are three potentially important caveats that are 244 
relevant to interpretation of the data. Firstly, the results indicated that ecosystem ‘state variables’ (e.g. 245 
dissolved oxygen) were more sensitive indicators of the reported transition than estimates of rates (e.g. 246 
gross primary production34). This potentially indicates insufficiencies in available methods for 247 
quantifying key system changes. Secondly, even in this very comprehensive study, response patterns 248 
of different indicators and EWIs varied quite substantially. Thirdly, the methods used in whole lake 249 
experiments require that the manipulated and reference lake(s) are in synchrony over the sampling 250 
period and frequency of interest, which may be unlikely at such high monitoring frequency.  251 

Lower temporal frequency data from many other whole lake experiments are available for the 252 
determination of longer term effects of environmental change on ecological stability indicators. Such 253 
studies are important because they have been conducted in systems for which there is adequate causal 254 
understanding of the relevant ecological mechanisms driving change. Although few of these studies 255 
have been framed using ecological resilience or stability terminology, we demonstrate the potential to 256 
retrospectively explore the effects of perturbations on ecological stability more generally, irrespective of 257 
whether a regime shift was reported or planned in the original design (Fig. 3). There are many whole 258 
lake experiments lasting from years to decades, the longest of which are those aiming to restore lakes 259 
from external pressures42. While some of these have focused solely on reducing external pressures, 260 
others have been conducted to control some of the intrinsic processes, or feedback mechanisms, 261 
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known to determine ecological conditions after changes in external pressures have occurred. These 262 
include measures to reduce internal phosphorus cycling in lakes43, or to alter food-web structure and 263 
macrophyte community by manipulating fish stocks and/or transplanting submerged macrophytes44. 264 
Whilst the data frequency may not be appropriate for assessing EWIs of regime shifts when potentially 265 
expected, these experiments can be used to characterise the timelines of changes in the stability of 266 
lake variables, for example, following commonly used management approaches (Fig. 3). In addition, 267 
they may be used to explore non-stationary behaviour with and without management interventions. 268 
When considered in the context of simple indicators of ecological stability, it becomes apparent that 269 
responses to management can take decades to manifest and do not necessarily result in a more stable 270 
ecosystem. 271 

[FIGURE 3] 272 

To maximise their applicability, we recommend these novel insights from single site experimental 273 
studies be used to inform the re-analysis of the vast quantities of data from other experimental studies 274 
so as to develop testable hypotheses of whole system responses to specific and controlled pressure 275 
scenarios. The results of this work should inform the development of novel management approaches 276 
designed to manipulate ecological stability at the ecosystem scale, which could, in turn, facilitate a more 277 
valid conjunction of EWIs and subsequent regime shifts. 278 

Capitalising on Natural Events  279 

Given the recent focus on developing EWIs, we stress the need to continue to build and refine our best 280 
conceptual models of ecosystem scale responses to pressures, in general. Multi-decadal to century-281 
long lake monitoring data45-53 are becoming increasingly available for use in this endeavour. Although 282 
such data are useful for the identification of regime shifts, their relatively coarse temporal resolution, 283 
may provide only limited opportunities to assess EWIs12. Long time series provide more context to 284 
ecosystem change than can be achieved by short term experiments however, and are more realistic in 285 
terms of noise and stochasticity. We advocate the use of these long-term data which have, at their core, 286 
the sound a priori knowledge of the mechanisms underlying ecosystem scale responses to past or 287 
current environmental change needed to provide credible alternative approaches to early warning of 288 
regime shifts across large populations of lakes. 289 

Most studies purporting to show discontinuous regime shifts report that shallow lakes may switch from 290 
a turbid to clear water state19. The most commonly reported regime shift is the response of shallow 291 
lakes to increasing and decreasing phosphorus loading, which can cause a critical transition between 292 
clear water, macrophyte dominated and turbid water phytoplankton dominated states, respectively53. 293 
While such shifts have been observed, numerous studies of shallow lakes in recovery after external 294 
nutrient loading reduction have not exhibited this response, even when theory suggests they should 295 
have32. These results suggest that either pressure reductions may have been insufficient to reach a 296 
critical threshold, thresholds were not reached because of the impacts of other interacting processes 297 
(warming, food web structure changes), not all shallow lakes exhibit regime shifts, or that reorganisation 298 
at the ecosystem scale takes much longer than expected and follows the path of gradual adjustment of 299 
the system as the pressures change. Process based modelling (i.e. PCLake) has been used in this 300 
context to construct testable hypotheses with which the effects of lake typology (e.g. fetch, depth, fishery 301 
practices, etc.) and pressure intensity interact to shape a continuum of ecosystem responses54. 302 
Additionally, evidence of multiple and varied ecosystem responses to alternative pressure scenarios 303 
have been confirmed using multi-lake observations. For example, Bayley et al. (2007)55 showed that 304 
the ‘clear water’ to ‘turbid water’ regime shifts occurred across Canadian Prairie shallow lakes in 305 
response to extreme weather. 306 

[Figure 4] 307 

The pursuit of evidence to support the classical shallow lake regime shift described above in single site 308 
studies has dominated efforts in recent years. We call on the community to further develop ecological 309 
understanding and encapsulate this within conceptual and process based models to help predict the 310 
likelihood of novel regime shifts that threaten many lakes globally. For example, based on evidence 311 
from long-term lake monitoring data and remote sensing archives coupled with process-based 312 
modelling, we hypothesise that the widespread increase in dissolved organic carbon (DOC) 313 
concentrations in temperate lakes associated with recovery from acidification56 and a changing climate 314 
will result in an increased occurrence of regime shifts across many lakes in the57 coming decades. The 315 
form of the regime shift is apparent from a critical transition observed in Lake Härsvatten (Fig. 4) and 316 
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confirmed by other studies that have reported an increase in surface water DOC concentrations 317 
resulting in a decrease in transparency, an increase in warming of epilimnetic waters, and longer and 318 
stronger thermal stratification48, potentially inducing a regime shift as lakes switch from di- to mono-319 
mixis. This, in turn, has the potential to cause more intense periods of anoxia in hypolimnetic waters58, 320 
resulting in increased internal loading of phosphorus (Fig. 4), stabilising the novel state. Couture et al. 321 
(2015)59 present a process based model for this form of regime shift that could be used to simulate the 322 
effects of lake type on the probability of occurrence in response to changes in DOC concentrations. 323 
Thus, while the principle response variable in this context (DOC) displays a linear response over time, 324 
it can induce thresholds and a regime shift in secondary response variables. This DOC-response regime 325 
shift represents a hitherto unforeseen effect of post-acidification recovery. 326 

While the shifts in hypolimnetic water chemistry for Lake Härsvatten would not, necessarily, have been 327 
detected using statistical EWIs, they could have been predicted based on a priori mechanistic 328 
knowledge of lake function combined with process-based modelling. This well-established approach 329 
should be developed to provide estimates of the probability of occurrence of regime shifts at the lake-330 
district scale to provide a test bed on which to address the current uncertainty associated with EWIs. 331 
We propose that existing theory frameworks (e.g. alternative stable-state theory) be combined with the 332 
requirements of EWI analysis to support future monitoring of lakes for which there is a high probability 333 
of an impending regime shift, for example, following wide spread reduction in catchment phosphorus 334 
loading or recovery from acidification, in response to increasing frequency of extreme weather events 335 
or in line with the DOC example provided above.  336 

Quantifying Ecological Resilience: A New Perspective  337 

One primary focus of the discipline of ecology is the quantification of patterns of change in organism 338 
productivity and biomass accumulation in response to changes in their biological and physical 339 
environment. Clearly, the early detection of deviations from desirable, stable conditions promises 340 
practical benefits in terms of motivating rapid management responses to mitigate potential, undesirable 341 
regime shifts. However, recent assessments of regime shift EWIs using commonly collected monitoring 342 
data have confirmed that confidence in their application to support management decisions is too low 343 
for wide-scale practical application. This is due, at least in part, to a lack of consideration of temporal, 344 
spatial and ecological scales, a failure to embed EWIs in an a priori mechanistic understanding of 345 
ecosystem function and the lack of a clear probabilistic framework with which the co-occurrence of 346 
regime shifts and loss of ecological stability preceding them have been confirmed.  347 

Given the need for evidence based management underpinned by robust estimates of uncertainty, we 348 
return to the framework of the conjunction rule. We have demonstrated that the research field is at an 349 
early stage of development. Specifically, statistical tools are needed to credibly evaluate the probability 350 
that regime shifts will occur in combination with responses in EWIs. To address this, we urge the 351 
community to use the well-established statistical tools that are available to examine ecological resilience 352 
theory by using objective criteria9 within a robust probabilistic framework. To address issues of detection 353 
of EWIs and regime shifts outlined herein, we argue for future studies to adopt a formal probabilistic 354 
framework, based on the conjunction rule. Specifically, quantification of the probability of detecting both 355 
EWIs and a regime shift (P(EWIt,s & RSt,s)) in monitoring data given the probability of detecting EWIs 356 
(P(EWIt,s)) and the conditional probability that we will then observe a subsequent regime shift (RS), 357 
given the previously-identified EWIs (P(RSt,s | EWIt,s)):  358 

P(EWIt,s & RSt,s) = P(EWIt,s) x P(RSt,s | EWIt,s) 359 

This statement applies across statistical “populations” of lakes. The subscripts t and s acknowledge that 360 
we would expect the probabilities of observing EWIs and regime shifts to differ among lakes belonging 361 
to different ecological typologies (t, e.g. shallow versus deep, or nutrient-rich versus nutrient-poor lakes) 362 
and with respect to the specific stressor (s, e.g. increased phosphorus loading, rising water 363 
temperature) acting on lakes of any given typology. In order to properly evaluate the widespread 364 
applicability and efficacy of any specific EWI, to inform lake management, we need to correctly quantify 365 
the conditional probability P(RSt,s | EWIt,s) using experimental and observational data; the probability 366 
that we will actually observe a regime shift following the detection of an EWI, for a lake of type t 367 
responding to stressor s. Of specific interest is the “false discovery rate”, 1- P(RSt,s | EWIt,s), which is 368 
the probability that a regime shift will not follow detectable EWIs1,40,60, a scenario that could result in 369 
unnecessary and costly management interventions.  370 
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As a first step toward providing robust estimates of probability to support the prediction of ecological 371 
responses to multiple pressures, co-ordinated analyses of empirical case studies and scenario-based 372 
modelling should be used to estimate the likely numeric values of the probabilities of the terms above. 373 
In this respect, ensemble-modelling would be a particularly powerful approach, allowing systematic 374 
assessment of multiple ecological scenarios using a series of structurally-different process-based 375 
models. This approach allows more objective assessment of uncertainties in mechanistic knowledge, 376 
ecological responses and current and future stressor scenarios61. 377 

We propose that, alongside efforts to evaluate the real-world generic applicability of statistical EWIs of 378 
“sudden change”, we should also strive to improve our capacity to predict, observe and manipulate 379 
ecosystem stability, more generally. Ecosystems respond to a multitude of perturbations operating over 380 
a wide range of temporal and ecological scales. The wide range of EWIs developed offer a suite of 381 
indicators designed to provide insight into a short, but nevertheless critical, window of change preceding 382 
regime shifts. However, these indicators can also be used to examine general ecological responses to 383 
environmental change or management, as demonstrated here. The relative merits of these indicators 384 
for such applications should be founded on advanced a priori mechanistic knowledge of lake ecology, 385 
encapsulated within conceptual, empirical and theoretical ecological models.  386 

There is a need to confront our current “best” projections of ecological responses to environmental 387 
change scenarios with newly collected monitoring data and identify where models need to be developed 388 
or improved to increase predictive power. The move from single experimental studies to integration of 389 
data and a priori mechanistic understanding over broad scales will allow an iterative process of model 390 
development and revised projections. This evidence base is essential to underpin effective preventative 391 
management grounded with intuitive logic.  392 

    393 
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Figure Legends 532 

Figure 1. Standard deviation (SD) as an early warning indicator (EWI) for three lake ecosystems, over 533 
different time scales. Left panel: 30-year time series of phytoplankton biomass (measured directly, or 534 
using chlorophyll a as a proxy). Right panel: corresponding long-term changes in SD after seasonally-535 
detrending these data. For each lake, the SD is calculated using all 30 years of data, and when 536 
truncating the time series to 20- and 10-year periods. Also, the SD is calculated within sliding windows 537 
encapsulating 10, 25 and 50% of the available data (visualised using bars at the top right of each panel), 538 
for each whole and truncated time series. The range of variation in the EWI increases when sliding time 539 
windows are shorter (compare rows). Variable data availability (time series length) can have similar 540 
effects; holding the percentage sliding window size constant, SD is more variable when calculated from 541 
shorter time series than when calculated from longer ones (compare columns).  This demonstrates the 542 
impact 'catch-all' solutions can have on findings and the importance of 'informed' analytical decisions. 543 

Figure 2. An assessment of early warning indicators during a transition from macrophyte to 544 
phytoplankton dominance in a 9 month mesocosm experiment39, 24th September 2012 to 2nd August 545 
2013, Wuhan Botanical Gardens, China (upper left photograph). Eleven mesocosms (1.2 m internal 546 
diameter and depth; upper right photograph) were placed in the pond covering stands of the 547 
macrophytes Potamogeton lucens and Cabomba caroliniana. The figure shows three replicated 548 
treatments of increasing nitrogen (N) loading via the addition of ammonium nitrate (NH4NO3) on every 549 
tenth day for the duration of the experiment. Mesocosms were inoculated with c. 10 cm bighead carp 550 
(Aristichthys nobilis; stocking density 100g m-2 per mesocosm). Samples for chlorophyll a analysis and 551 
observations of macrophyte PVI were collected every ten days and analysed as outlined by Olsen et 552 
al. (2015)39. This experiment achieved a transition from macrophyte to phytoplankton dominated state, 553 
only under the highest N loading treatment. In the low N loading treatment, macrophytes declined 554 
initially but recovered towards the end of the experiment. To demonstrate variation in ecological stability 555 
throughout the experimental period, standard deviation, kurtosis and autocorrelation values were 556 
calculated across a rolling window covering 25% of each time series using phytoplankton chlorophyll a 557 
concentrations for each treatment mesocosm during the experiment. The display is relative to the mean 558 
and +/- 1 standard deviation of the control mesocosms for each sample date and as ranges for each 559 
treatment for the duration of the experiment. The effects of treatment and time, and interactions between 560 
them were quantified using 2-way repeated measures analysis of variance with adjusted p-values using 561 
the statistical programme R, using a data set constrained to May 2012 allowing examination of changes 562 
preceding and during the transition. These tests show significantly higher standard deviation in the 563 
control treatment (f = 12.73, p = 4.10e-05) compared to the low and high treatments and a significant 564 
treatment:time interaction (f = 12.95, p = 3.41e-05). Significantly higher skewness and kurtosis was 565 
reported in the high treatments compared to low and control (skewness: f = 8.062, p = 0.002415, 566 
kurtosis: f = 9.333, p = 0.00078). 567 
 568 
Figure 3. Examples of changes in variability following management intervention. Variability in 569 
chlorophyll a concentrations (Standard Deviation, SD, calculated on log (X+1) data across a rolling 570 
window covering 10% of the time series length). The arrows represent the timing of the disturbances, 571 
as described. Lake Engelsholm was biomanipulated in 1992-1993 to support its recovery after nutrient 572 
loading reduction44,45. Nineteen tonnes of cyprinids were removed, decreasing the estimated biomass 573 
from 675 to 150-300 kg ha-1. This led to a substantial decrease in chlorophyll a concentrations, total 574 
phosphorus (TP) and total nitrogen (TN) as well as an increase in Secchi depth, and marked changes 575 
in SD; initially SD increased substantially, but then it declined markedly reaching the pre-manipulation 576 
level in 2000 before increasing to a relatively consistent level 10 years after the manipulation; by then 577 
SD was 30-50% higher than before manipulation. Aluminium (Al) was added to Lake Calhoun in 2001 578 
(42 g m-2; see arrow) to reduce the release of excess, legacy P accumulated in the sediment (internal 579 
loading). The Al inactivated 10.9 metric tonnes of mobile sediment P (by converting it the more stable 580 
Al-bound P), thereby reducing sediment release by 953 kg P/y (>90%)46,47. This decrease in internal P 581 
release led to a substantial reduction of epilimnetic chlorophyll a concentration (70%) and TP (58%) 582 
and an increase in Secchi depth (74%) compared to pre-treatment (1991-2000). After Al treatment, SD 583 
decreased substantially until 2005, stabilized over the following 5 years (2006-2010), and then returned 584 
to near pre-manipulation levels from 2011 onwards. The data for Lake Calhoun features late spring/ 585 
summer data only due to ice cover, therefore EWIs were calculated for each year individually.  This 586 
resulted in less data being contained within the rolling window but a consistent amount for each year 587 
across the dataset.  588 
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Figure 4. Long term water quality measurements from Härsvatten, a lake experiencing a regime shift 589 
in hypolimnetic dissolved oxygen levels (DO) associated with increasing epilimnetic total organic carbon 590 
(TOC) concentrations (upper panel) and cumulative distribution of long-term (1988-2012) TOC trends 591 
for lakes in the Swedish national monitoring programme. Water chemistry measurements (dots), long 592 
term means (lines) and standard deviations (shaded boxes) before and after the 2004 DO regime shift 593 
are shown in the upper panel. At Härsvatten, there has been a continuous increase in epilimnetic TOC 594 
concentrations (blue dots), which is likely to have lengthened the duration and intensity of thermal 595 
stratification, leading to declining summer hypolimnetic DO concentrations (red dots). Repeated 596 
measurements of DO concentrations below 2 mg L-1 are a potential early warning indicator for a regime 597 
shift where internal P loading associated with suboxic and anoxic hypolimnetic waters induces a positive 598 
feedback in which greater P availability facilitates higher rates of DO consumption, thereby maintaining 599 
suboxic hypolimnetic conditions and on-going internal P release. There was a step change in the mean 600 
and standard deviation of annual average hypolimnetic DO concentrations at the end of 2004 (Pettit’s 601 
test; p<0.001 for mean and p<0.02 for variance) followed by an approximately 250% increase in 602 
hypolimnetic total phosphorus (TP) concentrations, most likely due to a sharp increase in internal P 603 
loading. The lower panel puts the observations at Härsvatten into context by showing the cumulative 604 
distribution of TOC trends for 233 Swedish lakes where long-term monitoring data are available. 605 
Concentrations increased in 88% of monitored lakes (orange lines) and Härsvatten is at the 42nd 606 
percentile of the cumulative distribution of trends (purple lines). While there is limited long term 607 
monitoring of hypolimnetic water chemistry in Swedish lakes (n=14), the trends in TOC (n=233) are 608 
suggestive of widespread regime shifts for dissolved oxygen in northern lakes. The 50th and 75th 609 
percentiles of the trend distribution (grey lines) are at 0.13 and 0.23 mg TOC L-1 yr-1, respectively. 610 


