260 research outputs found

    Clonal hematopoiesis in cardiovascular disease and therapeutic implications.

    Get PDF
    Clonal hematopoiesis arises from somatic mutations that provide a fitness advantage to hematopoietic stem cells and the outgrowth of clones of blood cells. Clonal hematopoiesis commonly involves mutations in genes that are involved in epigenetic modifications, signaling and DNA damage repair. Clonal hematopoiesis has emerged as a major independent risk factor in atherosclerotic cardiovascular disease, thrombosis and heart failure. Studies in mouse models of clonal hematopoiesis have shown an increase in atherosclerosis, thrombosis and heart failure, involving increased myeloid cell inflammatory responses and inflammasome activation. Although increased inflammatory responses have emerged as a common underlying principle, some recent studies indicate mutation-specific effects. The discovery of the association of clonal hematopoiesis with cardiovascular disease and the recent demonstration of benefit of anti-inflammatory treatments in human cardiovascular disease converge to suggest that anti-inflammatory treatments should be directed to individuals with clonal hematopoiesis. Such treatments could target specific inflammasomes, common downstream mediators such as IL-1β and IL-6, or mutations linked to clonal hematopoiesis.A.T. and J.J.F. are supported by a grant from the Leducq Foundation (TNE-18CVD04). A.T. is supported by NIH grant 155431. We thank M. A. Zuriaga for assistance with figure design.S

    Clonal hematopoiesis and atherosclerotic cardiovascular disease: A primer.

    Get PDF
    Despite current standards of care, a considerable risk of atherosclerotic cardiovascular disease remains in both primary and secondary prevention. In this setting, clonal hematopoiesis driven by somatic mutations has recently emerged as a relatively common, potent and independent risk factor for atherosclerotic cardiovascular disease and other cardiovascular conditions. Experimental studies in mice suggest that mutations in TET2 and JAK2, which are among the most common in clonal hematopoiesis, increase inflammation and are causally connected to accelerated atherosclerosis development, which may explain the link between clonal hematopoiesis and increased cardiovascular risk. In this review, we provide an overview of our current understanding of this emerging cardiovascular risk factor.S

    Loss of p27 phosphorylation at Ser10 accelerates early atherogenesis by promoting leukocyte recruitment via RhoA/ROCK

    Get PDF
    Reduced phosphorylation of the tumor suppressor p27(Kip1) (p27) at serine 10 (Ser10) is a hallmark of advanced human and mouse atherosclerosis. Apolipoprotein E-null mice defective for this posttranslational modification (apoE(-/-)p27Ser10Ala) exhibited increased atherosclerosis burden at late disease states. Here, we investigated the regulation of p27 phosphorylation in Ser10 at the very initial stages of atherosclerosis and its impact on endothelial-leukocyte interaction and early plaque formation. Hypercholesterolemia in fat-fed apoE(-/-) mice is associated with a rapid downregulation of p27-phospho-Ser10 in primary endothelial cells (ECs) and in aorta prior to the development of macroscopically-visible lesions. We find that lack of p27 phosphorylation at Ser10 enhances the expression of adhesion molecules in aorta of apoE(-/-) mice and ECs, and augments endothelial-leukocyte interactions and leukocyte recruitment in vivo. These effects correlated with increased RhoA/Rho-associated coiled-coil containing protein kinase (ROCK) signaling in ECs, and inhibition of this pathway with fasudil reduced leukocyte-EC interactions to control levels in the microvasculature of p27Ser10Ala mice. Moreover, apoE(-/-)p27Ser10Ala mice displayed increased leukocyte recruitment and homing to atherosusceptible arteries and augmented early plaque development, which could be blunted with fasudil. In conclusion, our studies demonstrate a very rapid reduction in p27-phospho-Ser10 levels at the onset of atherogenesis, which contributes to early plaque build-up through RhoA/ROCK-induced integrin expression in ECs and enhanced leukocyte recruitment.Spanish Ministry of Economy and Competitivity (MINECO) [SAF2010-16044, SAF2013-46663-R]; Fondo Europeo de Desarrollo Regional (FEDER); Instituto de Salud Carlos III [RD12/0042/0028]; FPU predoctoral fellowship from MINECO; MINECO; Pro-CNIC FoundationS

    Determinants of Progression and Regression of Subclinical Atherosclerosis Over 6 Years.

    Get PDF
    BACKGROUND Atherosclerosis is a systemic disease that frequently begins early in life. However, knowledge about the temporal disease dynamics (ie, progression or regression) of human subclinical atherosclerosis and their determinants is scarce. OBJECTIVES This study sought to investigate early subclinical atherosclerosis disease dynamics within a cohort of middle-aged, asymptomatic individuals by using multiterritorial 3-dimensional vascular ultrasound (3DVUS) imaging. METHODS A total of 3,471 participants from the PESA (Progression of Early Subclinical Atherosclerosis) cohort study (baseline age 40-55 years; 36% female) underwent 3 serial 3DVUS imaging assessments of peripheral arteries at 3-year intervals. Subclinical atherosclerosis was quantified as global plaque volume (mm3) (bilateral carotid and femoral plaque burden). Multivariable logistic regression models for progression and regression were developed using stepwise forward variable selection. RESULTS Baseline to 6-year subclinical atherosclerosis progression occurred in 32.7% of the cohort (17.5% presenting with incident disease and 15.2% progressing from prevalent disease at enrollment). Regression was observed in 8.0% of those patients with baseline disease. The effects of higher low-density lipoprotein cholesterol (LDL-C) and elevated systolic blood pressure (SBP) on 6-year subclinical atherosclerosis progression risk were more pronounced among participants in the youngest age stratum (Pinteraction = 0.04 and 0.02, respectively). CONCLUSIONS Over 6 years, subclinical atherosclerosis progressed in one-third of middle-age asymptomatic subjects. Atherosclerosis regression is possible in early stages of the disease. The impact of LDL-C and SBP on subclinical atherosclerosis progression was more pronounced in younger participants, a finding suggesting that the prevention of atherosclerosis and its progression could be enhanced by tighter risk factor control at younger ages, with a likely long-term impact on reducing the risk of clinical events. (Progression of Early Subclinical Atherosclerosis [PESA; also PESA-CNIC-Santander]; NCT01410318).S

    Accurate quantification of atherosclerotic plaque volume by 3D vascular ultrasound using the volumetric linear array method.

    Get PDF
    Direct quantification of atherosclerotic plaque volume by three-dimensional vascular ultrasound (3DVUS) is more reproducible than 2DUS-based three-dimensional (2D/3D) techniques that generate pseudo-3D volumes from summed 2D plaque areas; however, its accuracy has not been reported. We aimed to determine 3DVUS accuracy for plaque volume measurement with special emphasis on small plaques (a hallmark of early atherosclerosis). The in vitro study consisted of nine phantoms of different volumes (small and medium-large) embedded at variable distances from the surface (superficial vs. >5 cm-depth) and comparison of 3DVUS data generated using a novel volumetric-linear array method with the real phantom volumes. The in vivo study was undertaken in a rabbit model of atherosclerosis in which 3DVUS and 2D/3D volume measurements were correlated against gold-standard histological measurements. In the in vitro setting, there was a strong correlation between 3DVUS measures and real phantom volume both for small (3.0-64.5 mm(3) size) and medium-large (91.1-965.5 mm(3) size) phantoms embedded superficially, with intraclass correlation coefficients (ICC) of 0.99 and 0.98, respectively; conversely, when phantoms were placed at >5 cm, the correlation was only moderate (ICC = 0.67). In the in vivo setting there was strong correlation between 3DVUS-measured plaque volumes and the histological gold-standard (ICC = 0.99 [4.02-92.5 mm(3) size]). Conversely, the correlation between 2D/3D values and the histological gold standard (sum of plaque areas) was weaker (ICC = 0.87 [49-520 mm(2) size]), with large dispersion of the differences between measurements in Bland-Altman plots (mean error, 79.2 mm(2)). 3DVUS using the volumetric-linear array method accurately measures plaque volumes, including those of small plaques. Measurements are more accurate for superficial arterial territories than for deep territories.S

    Association Between a Social-Business Eating Pattern and Early Asymptomatic Atherosclerosis

    Get PDF
    BACKGROUND The importance of a healthy diet in relation to cardiovascular health promotion is widely recognized. Identifying specific dietary patterns related to early atherosclerosis would contribute greatly to inform effective primary prevention strategies. OBJECTIVES This study sought to quantify the association between specific dietary patterns and presence and extent of subclinical atherosclerosis in a population of asymptomatic middle-aged adults. METHODS The PESA (Progression of Early Subclinical Atherosclerosis) study enrolled 4,082 asymptomatic participants 40 to 54 years of age (mean age 45.8 years; 63\% male) to evaluate the presence of subclinical atherosclerosis in multiple vascular territories. A fundamental objective of this cohort study was to evaluate the life-style-related determinants, including diet, on atherosclerosis onset and development. We conducted a cross-sectional analysis of baseline data, including detailed information on dietary habits obtained as part of the overall life-style and risk factor assessment, as well as a complete vascular imaging study that was performed blinded to the clinical information. RESULTS Most PESA participants follow a Mediterranean (40\% of participants) or a Western (41\%) dietary pattern. A new pattern, identified among 19\% of participants, was labeled as a social-business eating pattern, characterized by a high consumption of red meat, pre-made foods, snacks, alcohol, and sugar-sweetened beverages and frequent eating-out behavior. Participants following this pattern presented a significantly worse cardiovascular risk profile and, after adjustment for risk factors, increased odds of presenting subclinical atherosclerosis (odds ratio: 1.31; 95\% confidence interval: 1.06 to 1.63) compared with participants following a Mediterranean diet. CONCLUSIONS A new social-business eating pattern, characterized by high consumption of red and processed meat, alcohol, and sugar-sweetened beverages, and by frequent snacking and eating out as part of an overall unhealthy life-style, is associated with an increased prevalence, burden, and multisite presence of subclinical atherosclerosis. (Progression of Early Subclinical Atherosclerosis [PESA]; NCT01410318) (C) 2016 by the American College of Cardiology Foundation.This study was supported by a noncompetitive unrestricted grant shared between the National Center for Cardiovascular Research Carlos III (CNIC) and the Bank of Santander. The PESA study is a noncommercial study independent of the health care and pharmaceutical industry. The CNIC is supported by the Spanish Ministry of Economy and Competitiveness (MINECO) and the Pro-CNIC Foundation, and is a Severo Ochoa Center of Excellence (MINECO award SEV-2015-0505). Dr. Vedanthan is supported by the Fogarty International Center of the National Institutes of Health under award K01 TW 009218-05. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Dr. Bueno has received advisory/speaking fees from AstraZeneca, Bayer, Bristol-Myers Squibb-Pfizer, Novartis, and Servier; has received a research grant from AstraZeneca; has received advisory fees from Abbott; and has received speaking fees from Ferrer. Frank B. Hu, MD, served as Guest Editor for this paper

    Bone marrow activation in response to metabolic syndrome and early atherosclerosis.

    Get PDF
    Experimental studies suggest that increased bone marrow (BM) activity is involved in the association between cardiovascular risk factors and inflammation in atherosclerosis. However, human data to support this association are sparse. The purpose was to study the association between cardiovascular risk factors, BM activation, and subclinical atherosclerosis. Whole body vascular 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging (18F-FDG PET/MRI) was performed in 745 apparently healthy individuals [median age 50.5 (46.8-53.6) years, 83.8% men] from the Progression of Early Subclinical Atherosclerosis (PESA) study. Bone marrow activation (defined as BM 18F-FDG uptake above the median maximal standardized uptake value) was assessed in the lumbar vertebrae (L3-L4). Systemic inflammation was indexed from circulating biomarkers. Early atherosclerosis was evaluated by arterial metabolic activity by 18F-FDG uptake in five vascular territories. Late atherosclerosis was evaluated by fully formed plaques on MRI. Subjects with BM activation were more frequently men (87.6 vs. 80.0%, P = 0.005) and more frequently had metabolic syndrome (MetS) (22.2 vs. 6.7%, P < 0.001). Bone marrow activation was significantly associated with all MetS components. Bone marrow activation was also associated with increased haematopoiesis-characterized by significantly elevated leucocyte (mainly neutrophil and monocytes) and erythrocyte counts-and with markers of systemic inflammation including high-sensitivity C-reactive protein, ferritin, fibrinogen, P-selectin, and vascular cell adhesion molecule-1. The associations between BM activation and MetS (and its components) and increased erythropoiesis were maintained in the subgroup of participants with no systemic inflammation. Bone marrow activation was significantly associated with high arterial metabolic activity (18F-FDG uptake). The co-occurrence of BM activation and arterial 18F-FDG uptake was associated with more advanced atherosclerosis (i.e. plaque presence and burden). In apparently healthy individuals, BM 18F-FDG uptake is associated with MetS and its components, even in the absence of systemic inflammation, and with elevated counts of circulating leucocytes. Bone marrow activation is associated with early atherosclerosis, characterized by high arterial metabolic activity. Bone marrow activation appears to be an early phenomenon in atherosclerosis development.[Progression of Early Subclinical Atherosclerosis (PESA); NCT01410318].The PESA study is funded by the CNIC and Santander Bank. The present study was partially funded by an intramural grant CNIC-Severo Ochoa to D.S. and B.I. B.I. is supported by the European Commission (H2020-HEALTH 945118 and ERC-CoG 819775). The CNIC is supported by the ISCIII, the Ministry of Science and Innovation, and the Pro CNIC Foundation. CNIC is a Severo Ochoa Center of Excellence (CEX2020-001041-S).S

    WNT5A-JNK regulation of vascular insulin resistance in human obesity

    Get PDF
    Obesity is associated with the development of vascular insulin resistance; however, pathophysiological mechanisms are poorly understood. We sought to investigate the role of WNT5A-JNK in the regulation of insulin-mediated vasodilator responses in human adipose tissue arterioles prone to endothelial dysfunction. In 43 severely obese (BMI 44±11 kg/m2) and five metabolically normal non-obese (BMI 26±2 kg/m2) subjects, we isolated arterioles from subcutaneous and visceral fat during planned surgeries. Using videomicroscopy, we examined insulin-mediated, endothelium-dependent vasodilator responses and characterized adipose tissue gene and protein expression using real-time polymerase chain reaction and Western blot analyses. Immunofluorescence was used to quantify endothelial nitric oxide synthase (eNOS) phosphorylation. Insulin-mediated vasodilation was markedly impaired in visceral compared to subcutaneous vessels from obese subjects (pWNT5A and its non-canonical receptors, which correlated negatively with insulin signaling. Pharmacological JNK antagonism with SP600125 markedly improved insulin-mediated vasodilation by sixfold (p

    Metoprolol blunts the time-dependent progression of infarct size.

    Get PDF
    Early metoprolol administration protects against myocardial ischemia-reperfusion injury, but its effect on infarct size progression (ischemic injury) is unknown. Eight groups of pigs (total n = 122) underwent coronary artery occlusion of varying duration (20, 25, 30, 35, 40, 45, 50, or 60 min) followed by reperfusion. In each group, pigs were randomized to i.v. metoprolol (0.75 mg/kg) or vehicle (saline) 20 min after ischemia onset. The primary outcome measure was infarct size (IS) on day7 cardiac magnetic resonance (CMR) normalized to area at risk (AAR, measured by perfusion computed tomography [CT] during ischemia). Metoprolol treatment reduced overall mortality (10% vs 26%, p = 0.03) and the incidence and number of primary ventricular fibrillations during infarct induction. In controls, IS after 20-min ischemia was ≈ 5% of the area AAR. Thereafter, IS progressed exponentially, occupying almost all the AAR after 35 min of ischemia. Metoprolol injection significantly reduced the slope of IS progression (p = 0.004 for final IS). Head-to-head comparison (metoprolol treated vs vehicle treated) showed statistically significant reductions in IS at 30, 35, 40, and 50-min reperfusion. At 60-min reperfusion, IS was 100% of AAR in both groups. Despite more prolonged ischemia, metoprolol-treated pigs reperfused at 50 min had smaller infarcts than control pigs undergoing ischemia for 40 or 45 min and similar-sized infarcts to those undergoing 35-min ischemia. Day-45 LVEF was higher in metoprolol-treated vs vehicle-treated pigs (41.6% vs 36.5%, p = 0.008). In summary, metoprolol administration early during ischemia attenuates IS progression and reduces the incidence of primary ventricular fibrillation. These data identify metoprolol as an intervention ideally suited to the treatment of STEMI patients identified early in the course of infarction and requiring long transport times before primary angioplasty.This study received funding from the Ministry of Science and Innovation (“RETOS 2019” Grant no. PID2019-107332RB-I00), from the Instituto de Salud Carlos III (ISCIII; PI16/02110) and the European Regional Development Fund (ERDF) “A way of making Europe” (# AC16/00021), and from the Spanish Society of Cardiology through a 2017 Translational Research grant. BI has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC-Consolidator Grant agreement no. 819775). M.L received support from a 2015 Severo Ochoa CNIC intramural grant. X.R. received support from the SEC-CNIC CARDIOJOVEN fellowship program. R.F-J is a recipient of funding from the Carlos III Institute of Health-Fondo de Investigacion Sanitaria (PI19/01704) and has received funding from the European Union Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement No 707642. EO is recipient of funds from Programa de Atracción de Talento (2017-T1/BMD-5185) of Comunidad de Madrid. The CNIC is supported by the ISCIII, the Ministerio de Ciencia e Innovación (MICINN) and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505).S

    STARD1 promotes NASH-driven HCC by sustaining the generation of bile acids through the alternative mitochondrial pathway

    Get PDF
    Background & Aims Besides their physiological role in bile formation and fat digestion, bile acids (BAs) synthesised from cholesterol in hepatocytes act as signalling molecules that modulate hepatocellular carcinoma (HCC). Trafficking of cholesterol to mitochondria through steroidogenic acute regulatory protein 1 (STARD1) is the rate-limiting step in the alternative pathway of BA generation, the physiological relevance of which is not well understood. Moreover, the specific contribution of the STARD1-dependent BA synthesis pathway to HCC has not been previously explored. Methods STARD1 expression was analyzed in a cohort of human non-alcoholic steatohepatitis (NASH)-derived HCC specimens. Experimental NASH-driven HCC models included MUP-uPA mice fed a high-fat high-cholesterol (HFHC) diet and diethylnitrosamine (DEN) treatment in wild-type (WT) mice fed a HFHC diet. Molecular species of BAs and oxysterols were analyzed by mass spectrometry. Effects of NASH-derived BA profiles were investigated in tumour-initiated stem-like cells (TICs) and primary mouse hepatocytes (PMHs). Results Patients with NASH-associated HCC exhibited increased hepatic expression of STARD1 and an enhanced BA pool. Using NASH-driven HCC models, STARD1 overexpression in WT mice increased liver tumour multiplicity, whereas hepatocyte-specific STARD1 deletion (Stard1ΔHep) in WT or MUP-uPA mice reduced tumour burden. These findings mirrored the levels of unconjugated primary BAs, β-muricholic acid and cholic acid, and their tauroconjugates in STARD1-overexpressing and Stard1ΔHep mice. Incubation of TICs or PMHs with a mix of BAs mimicking this profile stimulated expression of genes involved in pluripotency, stemness and inflammation. Conclusions The study reveals a previously unrecognised role of STARD1 in HCC pathogenesis, wherein it promotes the synthesis of primary BAs through the mitochondrial pathway, the products of which act in TICs to stimulate self-renewal, stemness and inflammation. Lay summary Effective therapy for hepatocellular carcinoma (HCC) is limited because of our incomplete understanding of its pathogenesis. The contribution of the alternative pathway of bile acid (BA) synthesis to HCC development is unknown. We uncover a key role for steroidogenic acute regulatory protein 1 (STARD1) in non-alcoholic steatohepatitis-driven HCC, wherein it stimulates the generation of BAs in the mitochondrial acidic pathway, the products of which stimulate hepatocyte pluripotency and self-renewal, as well as inflammation.We acknowledge support from grants PID2019-111669RB-100, SAF2017-85877R and SAF2015-73579-JIN from Plan Nacional de I+D funded by the Agencia Estatal de Investigación (AEI), the Fondo Europeo de Desarrollo Regional (FEDER) and CIBEREHD; the center grant P50AA011999 Southern California Research Center for ALPD and Cirrhosis funded by NIAAA / NIH; as well as support from AGAUR of the Generalitat de Catalunya SGR-2017-1112, European Cooperation in Science & Technology (COST) ACTION CA17112 Prospective European Drug-Induced Liver Injury Network, the ‘ER stress-mitochondrial cholesterol axis in obesity-associated insulin resistance and comorbidities’-Ayudas FUNDACION BBVA and the Red Nacional 2018-102799-T de Enfermedades Metabólicas y Cáncer, and Project 201916/31 "Contribution of mitochondrial oxysterol and bile acid metabolism to liver carcinogenesis" 2019 by Fundació Marato TV3. We also acknowledge the support from the Fondo de Investigaciones Sanitarias, Instituto de Salud Carlos III, Spain (PI16/00598, co-funded by European Regional Development Fund / European Social Fund, ‘Investing in your future’) and Centro Internacional sobre el Envejecimiento (OLD-HEPAMARKER, 0348_CIE_6_E), Spain. We also acknowledge support from R01 CA2344128 and U01 AA022614 grants to M.K.Peer reviewe
    corecore