223 research outputs found

    Sedimentological characterization of Antarctic moraines using UAVs and Structure-from-Motion photogrammetry

    Get PDF
    In glacial environments particle-size analysis of moraines provides insights into clast origin, transport history, depositional mechanism and processes of reworking. Traditional methods for grain-size classification are labour-intensive, physically intrusive and are limited to patch-scale (1m2) observation. We develop emerging, high-resolution ground- and unmanned aerial vehicle-based ‘Structure-from-Motion’ (UAV-SfM) photogrammetry to recover grain-size information across an moraine surface in the Heritage Range, Antarctica. SfM data products were benchmarked against equivalent datasets acquired using terrestrial laser scanning, and were found to be accurate to within 1.7 and 50mm for patch- and site-scale modelling, respectively. Grain-size distributions were obtained through digital grain classification, or ‘photo-sieving’, of patch-scale SfM orthoimagery. Photo-sieved distributions were accurate to <2mm compared to control distributions derived from dry sieving. A relationship between patch-scale median grain size and the standard deviation of local surface elevations was applied to a site-scale UAV-SfM model to facilitate upscaling and the production of a spatially continuous map of the median grain size across a 0.3 km2 area of moraine. This highly automated workflow for site scale sedimentological characterization eliminates much of the subjectivity associated with traditional methods and forms a sound basis for subsequent glaciological process interpretation and analysis

    La4_4Co4_4X (X = Pb, Bi, Sb): a demonstration of antagonistic pairs as a route to quasi-low dimensional ternary compounds

    Full text link
    We outline how pairs of strongly immiscible elements, referred to here as antagonistic pairs, can be used to synthesize ternary compounds with quasi-reduced dimensional motifs. By identifying third elements that are compatible with a given antagonistic pair, ternary compounds can be formed in which the third element segregates the immiscible atoms into spatially separated substructures. Quasi-low dimensional structural units are a natural consequence of the immiscible atoms seeking to avoid contact in the solid-state. As proof of principle, we present the discovery and physical properties of La4_4Co4_4X (X = Pb, Bi, Sb), a new family of intermetallics based on the antagonistic pairs Co-Pb and Co-Bi. La4_4Co4_4X adopts a new orthorhombic crystal structure (space group Pbam) containing quasi-2D Co slabs and La-X layers that stack along the a-axis. Consistent with our proposal, the La atoms separate the Co and X substructures, ensuring there are no direct contacts between immiscible atoms. Within the Co slabs, the atoms occupy the vertices of corner sharing tetrahedra and triangles, and this motif produces flat electronic bands near the Fermi level that favor magnetism. The Co is moment bearing in La4_4Co4_4X, and we show that whereas La4_4Co4_4Pb behaves as a three dimensional antiferromagnet with TN_N = 220 K, La4_4Co4_4Bi and La4_4Co4_4Sb have behavior consistent with low dimensional magnetic coupling and ordering, with TN_N = 153 K and 143 K respectively. In addition to the Pb, Bi, and Sb based La4_4Co4_4X compounds, we were likely able to produce an analogous La4_4Co4_4Sn in polycrystalline form, although we were unable to isolate single crystals. We anticipate that using mutually compatible third elements with an antagonistic pair represents a generalizable design principle for discovering new materials and structure types containing low-dimensional substructures

    Topological Entanglement Entropy of a Bose-Hubbard Spin Liquid

    Full text link
    The Landau paradigm of classifying phases by broken symmetries was demonstrated to be incomplete when it was realized that different quantum Hall states could only be distinguished by more subtle, topological properties. Today, the role of topology as an underlying description of order has branched out to include topological band insulators, and certain featureless gapped Mott insulators with a topological degeneracy in the groundstate wavefunction. Despite intense focus, very few candidates for these topologically ordered "spin liquids" exist. The main difficulty in finding systems that harbour spin liquid states is the very fact that they violate the Landau paradigm, making conventional order parameters non-existent. Here, we uncover a spin liquid phase in a Bose-Hubbard model on the kagome lattice, and measure its topological order directly via the topological entanglement entropy. This is the first smoking-gun demonstration of a non-trivial spin liquid, identified through its entanglement entropy as a gapped groundstate with emergent Z2 gauge symmetry.Comment: 4+ pages, 3 figure

    Design principles for the ultimate gas deliverable capacity material: nonporous to porous deformations without volume change

    Get PDF
    Understanding the fundamental limits of gas deliverable capacity in porous materials is of critical importance as it informs whether technical targets (e.g., for on-board vehicular storage) are feasible. High-throughput screening studies of rigid materials, for example, have shown they are not able to achieve the original ARPA-E methane storage targets, yet an interesting question remains: what is the upper limit of deliverable capacity in flexible materials? In this work we develop a statistical adsorption model that specifically probes the limit of deliverable capacity in intrinsically flexible materials. The resulting adsorption thermodynamics indicate that a perfectly designed, intrinsically flexible nanoporous material could achieve higher methane deliverable capacity than the best benchmark systems known to date with little to no total volume change. Density functional theory and grand canonical Monte Carlo simulations identify a known metal–organic framework (MOF) that validates key features of the model. Therefore, this work (1) motivates a continued, extensive effort to rationally design a porous material analogous to the adsorption model and (2) calls for continued discovery of additional high deliverable capacity materials that remain hidden from rigid structure screening studies due to nominal non-porosity

    Stabilization of an ambient-pressure collapsed tetragonal phase in CaFe2As2 and tuning of the orthorhombic-antiferromagnetic transition temperature by over 70 K via control of nanoscale precipitates

    Get PDF
    We have found a remarkably large response of the transition temperature of CaFe2As2 single crystals grown from excess FeAs to annealing and quenching temperature. Whereas crystals that are annealed at 400ˆC exhibit a first-order phase transition from a high-temperature tetragonal to a low-temperature orthorhombic and antiferromagnetic state near 170 K, crystals that have been quenched from 960ˆC exhibit a transition from a high-temperature tetragonal phase to a low-temperature, nonmagnetic, collapsed tetragonal phase below 100 K. By use of temperature-dependent electrical resistivity, magnetic susceptibility, x-ray diffraction, Mössbauer spectroscopy, and nuclear magnetic resonance measurements we have been able to demonstrate that the transition temperature can be reduced in a monotonic fashion by varying the annealing or quenching temperature from 400ˆ to 850ˆC with the low-temperature state remaining antiferromagnetic for transition temperatures larger than 100 K and becoming collapsed tetragonal, nonmagnetic for transition temperatures below 90 K. This suppression of the orthorhombic-antiferromagnetic phase transition and its ultimate replacement with the collapsed tetragonal, nonmagnetic phase is similar to what has been observed for CaFe2As2 under hydrostatic pressure. Transmission electron microscopy studies indicate that there is a temperature-dependent width of formation of CaFe2As2 with a decreasing amount of excess Fe and As being soluble in the single crystal at lower annealing temperatures. For samples quenched from 960ˆC there is a fine (of order 10 nm) semiuniform distribution of precipitate that can be associated with an average strain field, whereas for samples annealed at 400ˆC the excess Fe and As form mesoscopic grains that induce little strain throughout the CaFe2As2 lattice

    Broken symmetry and the variation of critical properties in the phase behaviour of supramolecular rhombus tilings

    Get PDF
    The degree of randomness, or partial order, present in two-dimensional supramolecular arrays of isophthalate tetracarboxylic acids is shown to vary due to subtle chemical changes such as the choice of solvent or small differences in molecular dimensions. This variation may be quantified using an order parameter and reveals a novel phase behaviour including random tiling with varying critical properties as well as ordered phases dominated by either parallel or non-parallel alignment of neighbouring molecules, consistent with long-standing theoretical studies. The balance between order and randomness is driven by small differences in the intermolecular interaction energies, which we show, using numerical simulations, can be related to the measured order parameter. Significant variations occur even when the energy difference is much less than the thermal energy highlighting the delicate balance between entropic and energetic effects in complex self-assembly processes

    Preserving the impossible: conservation of soft-sediment hominin footprint sites and strategies for three-dimensional digital data capture.

    Get PDF
    Human footprints provide some of the most publically emotive and tangible evidence of our ancestors. To the scientific community they provide evidence of stature, presence, behaviour and in the case of early hominins potential evidence with respect to the evolution of gait. While rare in the geological record the number of footprint sites has increased in recent years along with the analytical tools available for their study. Many of these sites are at risk from rapid erosion, including the Ileret footprints in northern Kenya which are second only in age to those at Laetoli (Tanzania). Unlithified, soft-sediment footprint sites such these pose a significant geoconservation challenge. In the first part of this paper conservation and preservation options are explored leading to the conclusion that to 'record and digitally rescue' provides the only viable approach. Key to such strategies is the increasing availability of three-dimensional data capture either via optical laser scanning and/or digital photogrammetry. Within the discipline there is a developing schism between those that favour one approach over the other and a requirement from geoconservationists and the scientific community for some form of objective appraisal of these alternatives is necessary. Consequently in the second part of this paper we evaluate these alternative approaches and the role they can play in a 'record and digitally rescue' conservation strategy. Using modern footprint data, digital models created via optical laser scanning are compared to those generated by state-of-the-art photogrammetry. Both methods give comparable although subtly different results. This data is evaluated alongside a review of field deployment issues to provide guidance to the community with respect to the factors which need to be considered in digital conservation of human/hominin footprints

    ROB-MEN: a tool to assess risk of bias due to missing evidence in network meta-analysis

    Get PDF
    Background Selective outcome reporting and publication bias threaten the validity of systematic reviews and meta-analyses and can affect clinical decision-making. A rigorous method to evaluate the impact of this bias on the results of network meta-analyses of interventions is lacking. We present a tool to assess the Risk Of Bias due to Missing Evidence in Network meta-analysis (ROB-MEN). Methods ROB-MEN first evaluates the risk of bias due to missing evidence for each of the possible pairwise comparison that can be made between the interventions in the network. This step considers possible bias due to the presence of studies with unavailable results (within-study assessment of bias) and the potential for unpublished studies (across-study assessment of bias). The second step combines the judgements about the risk of bias due to missing evidence in pairwise comparisons with (i) the contribution of direct comparisons to the network meta-analysis estimates, (ii) possible small-study effects evaluated by network meta-regression, and (iii) any bias from unobserved comparisons. Then, a level of “low risk”, “some concerns”, or “high risk” for the bias due to missing evidence is assigned to each estimate, which is our tool’s final output. Results We describe the methodology of ROB-MEN step-by-step using an illustrative example from a published NMA of non-diagnostic modalities for the detection of coronary artery disease in patients with low risk acute coronary syndrome. We also report a full application of the tool on a larger and more complex published network of 18 drugs from head-to-head studies for the acute treatment of adults with major depressive disorder. Conclusions ROB-MEN is the first tool for evaluating the risk of bias due to missing evidence in network meta-analysis and applies to networks of all sizes and geometry. The use of ROB-MEN is facilitated by an R Shiny web application that produces the Pairwise Comparisons and ROB-MEN Table and is incorporated in the reporting bias domain of the CINeMA framework and software
    corecore