113 research outputs found

    The application of different 3D-scan-systems and photogrammetry at an excavation — A Neolithic dolmen from Switzerland

    Get PDF
    The discovery of a Neolithic dolmen in Switzerland with inhumations, dating between 3500 and 3000 BCE, was an exceptional finding. To provide best conditions for subsequent studies on the archaeological remains our interdisciplinary team decided to apply 3D documentation. Depending on different factors, two scanning systems with four scanners and photogrammetry were applied and the obtained data was combined. Detailed excavation plans and simultaneously a reduction of excavation time without loss of information were the result. A virtual animation of the dolmen in its reconstructed ancient appearance combined with the context of the grave goods was created. The 3D documentation provided initial data for anthropological and paleogenetic analyses. The individuals buried in the dolmen might provide novel information to the Neolithic research of central Europe. Additionally, with the help of the 3D data, the dolmen was rebuilt to make this archaeological heritage accessible to the public

    Population history from the Neolithic to present on the Mediterranean island of Sardinia: an ancient DNA perspective

    No full text
    Recent ancient DNA studies of western Eurasia have revealed a dynamic history of admixture, with evidence for major migrations during the Neolithic and Bronze Age. The population of the Mediterranean island of Sardinia has been notable in these studies –} Neolithic individuals from mainland Europe cluster more closely with Sardinian individuals than with all other present-day Europeans. The current model to explain this result is that Sardinia received an initial influx of Neolithic ancestry and then remained relatively isolated from expansions in the later Neolithic and Bronze Age that took place in continental Europe. To test this model, we generated genome-wide capture data (approximately 1.2 million variants) for 43 ancient Sardinian individuals spanning the Neolithic through the Bronze Age, including individuals from Sardinia{’}s Nuragic culture, which is known for the construction of numerous large stone towers throughout the island. We analyze these new samples in the context of previously generated genome-wide ancient DNA data from 972 ancient individuals across western Eurasia and whole-genome sequence data from approximately 1,500 modern individuals from Sardinia. The ancient Sardinian individuals show a strong affinity to western Mediterranean Neolithic populations and we infer a high degree of genetic continuity on the island from the Neolithic (around fifth millennium BCE) through the Nuragic period (second millennium BCE). In particular, during the Bronze Age in Sardinia, we do not find significant levels of the {“}Steppe{” ancestry that was spreading in many other parts of Europe at that time. We also characterize subsequent genetic influx between the Nuragic period and the present. We detect novel, modest signals of admixture between 1,000 BCE and present-day, from ancestry sources in the eastern and northern Mediterranean. Within Sardinia, we confirm that populations from the more geographically isolated mountainous provinces have experienced elevated levels of genetic drift and that northern and southwestern regions of the island received more gene flow from outside Sardinia. Overall, our genetic analysis sheds new light on the origin of Neolithic settlement on Sardinia, reinforces models of genetic continuity on the island, and provides enhanced power to detect post-Bronze-Age gene flow. Together, these findings offer a refined demographic model for future medical genetic studies in Sardinia

    Comparison of target enrichment strategies for ancient pathogen DNA

    Get PDF
    In ancient DNA research, the degraded nature of the samples generally results in poor yields of highly fragmented DNA; targeted DNA enrichment is thus required to maximize research outcomes. The three commonly used methods ? array-based hybridization capture and in-solution capture using either RNA or DNA baits ? have different characteristics that may influence the capture efficiency, specificity and reproducibility. Here we compare their performance in enriching pathogen DNA of Mycobacterium leprae and Treponema pallidum from 11 ancient and 19 modern samples. We find that in-solution approaches are the most effective method in ancient and modern samples of both pathogens and that RNA baits usually perform better than DNA baits

    Ancient genomes reveal social and genetic structure of Late Neolithic Switzerland

    Get PDF
    Genetic studies of Neolithic and Bronze Age skeletons from Europe have provided evidence for strong population genetic changes at the beginning and the end of the Neolithic period. To further understand the implications of these in Southern Central Europe, we analyze 96 ancient genomes from Switzerland, Southern Germany, and the Alsace region in France, covering the Middle/Late Neolithic to Early Bronze Age. Similar to previously described genetic changes in other parts of Europe from the early 3rd millennium BCE, we detect an arrival of ancestry related to Late Neolithic pastoralists from the Pontic-Caspian steppe in Switzerland as early as 2860-2460 calBCE. Our analyses suggest that this genetic turnover was a complex process lasting almost 1000 years and involved highly genetically structured populations in this region

    Ancient DNA reveals admixture history and endogamy in the prehistoric Aegean (advance online)

    Get PDF
    The Neolithic and Bronze Ages were highly transformative periods forthe genetic history of Europe but for the Aegean—a region fundamentalto Europe’s prehistory—the biological dimensions of cultural transitionshave been elucidated only to a limited extent so far. We have analysed newlygenerated genome-wide data from 102 ancient individuals from Crete, theGreek mainland and the Aegean Islands, spanning from the Neolithic tothe Iron Age. We found that the early farmers from Crete shared the sameancestry as other contemporaneous Neolithic Aegeans. In contrast, the endof the Neolithic period and the following Early Bronze Age were marked by‘eastern’ gene flow, which was predominantly of Anatolian origin in Crete.Confirming previous findings for additional Central/Eastern Europeanancestry in the Greek mainland by the Middle Bronze Age, we additionallyshow that such genetic signatures appeared in Crete gradually from theseventeenth to twelfth centuries bc, a period when the influence of themainland over the island intensified. Biological and cultural connectednesswithin the Aegean is also supported by the finding of consanguineousendogamy practiced at high frequencies, unprecedented in the globalancient DNA record. Our results highlight the potential of archaeogenomicapproaches in the Aegean for unravelling the interplay of genetic admixture,marital and other cultural practice

    Genetic history from the Middle Neolithic to present on the Mediterranean island of Sardinia

    Get PDF
    The island of Sardinia has been of particular interest to geneticists for decades. The current model for Sardinia's genetic history describes the island as harboring a founder population that was established largely from the Neolithic peoples of southern Europe and remained isolated from later Bronze Age expansions on the mainland. To evaluate this model, we generate genome-wide ancient DNA data for 70 individuals from 21 Sardinian archaeological sites spanning the Middle Neolithic through the Medieval period. The earliest individuals show a strong affinity to western Mediterranean Neolithic populations, followed by an extended period of genetic continuity on the island through the Nuragic period (second millennium BCE). Beginning with individuals from Phoenician/Punic sites (first millennium BCE), we observe spatially-varying signals of admixture with sources principally from the eastern and northern Mediterranean. Overall, our analysis sheds light on the genetic history of Sardinia, revealing how relationships to mainland populations shifted over time.Joseph H. Marcus ... Wolfgang Haak ... et al

    Reconstructing the Deep Population History of Central and South America

    Get PDF
    We report genome-wide ancient DNA from 49 individuals forming four parallel time transects in Belize, Brazil, the Central Andes, and the Southern Cone, each dating to at least 9,000 years ago. The common ancestral population radiated rapidly from just one of the two early branches that contributed to Native Americans today. We document two previously unappreciated streams of gene flow between North and South America. One affected the Central Andes by 4,200 years ago, while the other explains an affinity between the oldest North American genome associated with the Clovis culture and the oldest Central and South Americans from Chile, Brazil, and Belize. However, this was not the primary source for later South Americans, as the other ancient individuals derive from lineages without specific affinity to the Clovis-associated genome, suggesting a population replacement that began at least 9,000 years ago and was followed by substantial population continuity in multiple regions
    • 

    corecore