451 research outputs found

    A study of the relative effectiveness and cost of computerized information retrieval in the interactive mode

    Get PDF
    Results of a number of experiments to illuminate the relative effectiveness and costs of computerized information retrieval in the interactive mode are reported. It was found that for equal time spent in preparing the search strategy, the batch and interactive modes gave approximately equal recall and relevance. The interactive mode however encourages the searcher to devote more time to the task and therefore usually yields improved output. Engineering costs as a result are higher in this mode. Estimates of associated hardware costs also indicate that operation in this mode is more expensive. Skilled RECON users like the rapid feedback and additional features offered by this mode if they are not constrained by considerations of cost

    Errors and discrepancies in the administration of intravenous infusions: a mixed methods multihospital observational study

    Get PDF
    Introduction Intravenous medication administration has traditionally been regarded as error prone, with high potential for harm. A recent US multisite study revealed few potentially harmful errors despite a high overall error rate. However, there is limited evidence about infusion practices in England and how they relate to prevalence and types of error. Objectives To determine the prevalence, types and severity of errors and discrepancies in infusion administration in English hospitals, and to explore sources of variation, including the contribution of smart pumps. Methods We conducted an observational point prevalence study of intravenous infusions in 16 National Health Service hospital trusts. Observers compared each infusion against the medication order and local policy. Deviations were classified as errors or discrepancies based on their potential for patient harm. Contextual issues and reasons for deviations were explored qualitatively during observer debriefs. Results Data were collected from 1326 patients and 2008 infusions. Errors were observed in 231 infusions (11.5%, 95% CI 10.2% to 13.0%). Discrepancies were observed in 1065 infusions (53.0%, 95% CI 50.8% to 55.2%). Twenty-three errors (1.1% of all infusions) were considered potentially harmful; none were judged likely to prolong hospital stay or result in long-term harm. Types and prevalence of errors and discrepancies varied widely among trusts, as did local policies. Deviations from medication orders and local policies were sometimes made for efficiency or patient need. Smart pumps, as currently implemented, had little effect, with similar error rates observed in infusions delivered with and without a smart pump (10.3% vs 10.8%, p=0.8). Conclusion Errors and discrepancies are relatively common in everyday infusion administrations but most have low potential for patient harm. Better understanding of performance variability to strategically manage risk may be a more helpful tactic than striving to eliminate all deviations

    Genetic screening of 202 individuals with congenital limb malformations and requiring reconstructive surgery

    Get PDF
    BACKGROUND: Congenital limb malformations (CLMs) are common and present to a variety of specialties, notably plastic and orthopaedic surgeons, and clinical geneticists. The authors aimed to characterise causative mutations in an unselected cohort of patients with CLMs requiring reconstructive surgery. METHODS: 202 patients presenting with CLM were recruited. The authors obtained G-banded karyotypes and screened EN1, GLI3, HAND2, HOXD13, ROR2, SALL1, SALL4, ZRS of SHH, SPRY4, TBX5, TWIST1 and WNT7A for point mutations using denaturing high performance liquid chromatography (DHPLC) and direct sequencing. Multiplex ligation dependent probe amplification (MLPA) kits were developed and used to measure copy number in GLI3, HOXD13, ROR2, SALL1, SALL4, TBX5 and the ZRS of SHH. RESULTS: Within the cohort, causative genetic alterations were identified in 23 patients (11%): mutations in GLI3 (n = 5), HOXD13 (n = 5), the ZRS of SHH (n = 4), and chromosome abnormalities (n = 4) were the most common lesions found. Clinical features that predicted the discovery of a genetic cause included a bilateral malformation, positive family history, and having increasing numbers of limbs affected (all p<0.01). Additionally, specific patterns of malformation predicted mutations in specific genes. CONCLUSIONS: Based on higher mutation prevalence the authors propose that GLI3, HOXD13 and the ZRS of SHH should be prioritised for introduction into molecular genetic testing programmes for CLM. The authors have developed simple criteria that can refine the selection of patients by surgeons for referral to clinical geneticists. The cohort also represents an excellent resource to test for mutations in novel candidate genes

    Discovery of very-high-energy emission from RGB J2243+203 and derivation of its redshift upper limit

    Full text link
    Very-high-energy (VHE; >> 100 GeV) gamma-ray emission from the blazar RGB J2243+203 was discovered with the VERITAS Cherenkov telescope array, during the period between 21 and 24 December 2014. The VERITAS energy spectrum from this source can be fit by a power law with a photon index of 4.6±0.54.6 \pm 0.5, and a flux normalization at 0.15 TeV of (6.3±1.1)×1010 cm2s1TeV1(6.3 \pm 1.1) \times 10^{-10} ~ \textrm{cm}^{-2} \textrm{s}^{-1} \textrm{TeV}^{-1}. The integrated \textit{Fermi}-LAT flux from 1 GeV to 100 GeV during the VERITAS detection is (4.1±0.8)×10-8 cm-2s-1(4.1 \pm 0.8) \times 10^{\textrm{-8}} ~\textrm{cm}^{\textrm{-2}}\textrm{s}^{\textrm{-1}}, which is an order of magnitude larger than the four-year-averaged flux in the same energy range reported in the 3FGL catalog, (4.0±0.1×10-9 cm-2s-14.0 \pm 0.1 \times 10^{\textrm{-9}} ~ \textrm{cm}^{\textrm{-2}}\textrm{s}^{\textrm{-1}}). The detection with VERITAS triggered observations in the X-ray band with the \textit{Swift}-XRT. However, due to scheduling constraints \textit{Swift}-XRT observations were performed 67 hours after the VERITAS detection, not simultaneous with the VERITAS observations. The observed X-ray energy spectrum between 2 keV and 10 keV can be fitted with a power-law with a spectral index of 2.7±0.22.7 \pm 0.2, and the integrated photon flux in the same energy band is (3.6±0.6)×1013 cm2s1(3.6 \pm 0.6) \times 10^{-13} ~\textrm{cm}^{-2} \textrm{s}^{-1}. EBL model-dependent upper limits of the blazar redshift have been derived. Depending on the EBL model used, the upper limit varies in the range from z < 0.9<~0.9 to z < 1.1<~1.1

    Thermo-mechanical Dynamics of Nanoimprinting Anti-Reflective Structures onto Small-core Mid- IR Chalcogenide Fibers

    Get PDF
    Thermal nanoimprinting is a fast and versatile method for transferring the anti-reflective properties of subwavelength nanostructures onto the surface of highly reflective substrates, such as chalcogenide glass optical fiber end-facets. In this paper, the technique is explored experimentally on a range of different types of commercial and custom-drawn optical fibers to evaluate the influence of geometric design, core/cladding material, and thermo-mechanical properties. Up to 32.4 % increased transmission and 88.3 % total transmission is demonstrated in the 2-4.3 µm band using a mid-infrared super-continuum laser

    New GTC spectroscopic data and a statistical study to better constrain the redshift of the BL Lac RGB J2243 + 203

    Get PDF
    We present new spectroscopic data of the BL Lac RGB 2243 + 203, and its surroundings, obtained with the OSIRIS Multi Object Spectrograph (MOS) mounted in the Gran Telescopio Canarias (GTC). The spectra of neither the BL Lac nor its host galaxy show any spectral feature, thus hindering direct determination of its redshift. The spectroscopic redshift distribution of objects in the MOS field of view shows four galaxies with redshift between 0.5258 and 0.5288. We make use of a statistical analysis to test the possibility that the targeted BL Lac may be a member of that group. By using the spectroscopic redshifts obtained with our GTC observations, we found that this probability is between 86 and 93 per cent.Fil: Rosa González, D. Instituto Nacional de Astrofísica, Optica y Electrónica; MéxicoFil: Muriel, Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Mayya, Y. D.. Instituto Nacional de Astrofísica, Optica y Electrónica; MéxicoFil: Aretxaga, I.. Instituto Nacional de Astrofísica, Optica y Electrónica; MéxicoFil: Becerra González, J.. Instituto de Astrofisica de Canarias; EspañaFil: Carramiñana, Alberto. Instituto Nacional de Astrofísica, Optica y Electrónica; MéxicoFil: Méndez-Abreu, J.. Instituto Nacional de Astrofísica, Optica y Electrónica; MéxicoFil: Vega, O. Instituto Nacional de Astrofísica, Optica y Electrónica; MéxicoFil: Terlevich, E-. Instituto Nacional de Astrofísica, Optica y Electrónica; MéxicoFil: Coutiño de León, S.. Instituto Nacional de Astrofísica, Optica y Electrónica; MéxicoFil: Furniss, A.. Instituto Nacional de Astrofísica, Optica y Electrónica; MéxicoFil: Longinotti, A. L.. Instituto Nacional de Astrofísica, Optica y Electrónica; MéxicoFil: Terlevich, R. J.. Instituto Nacional de Astrofísica, Optica y Electrónica; MéxicoFil: Pichel, Ana Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Rovero, Adrian Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Donzelli, Carlos Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentin

    Direct measurement of stellar angular diameters by the VERITAS Cherenkov Telescopes

    Full text link
    The angular size of a star is a critical factor in determining its basic properties. Direct measurement of stellar angular diameters is difficult: at interstellar distances stars are generally too small to resolve by any individual imaging telescope. This fundamental limitation can be overcome by studying the diffraction pattern in the shadow cast when an asteroid occults a star, but only when the photometric uncertainty is smaller than the noise added by atmospheric scintillation. Atmospheric Cherenkov telescopes used for particle astrophysics observations have not generally been exploited for optical astronomy due to the modest optical quality of the mirror surface. However, their large mirror area makes them well suited for such high-time-resolution precision photometry measurements. Here we report two occultations of stars observed by the VERITAS Cherenkov telescopes with millisecond sampling, from which we are able to provide a direct measurement of the occulted stars' angular diameter at the 0.1\leq0.1 milliarcsecond scale. This is a resolution never achieved before with optical measurements and represents an order of magnitude improvement over the equivalent lunar occultation method. We compare the resulting stellar radius with empirically derived estimates from temperature and brightness measurements, confirming the latter can be biased for stars with ambiguous stellar classifications.Comment: Accepted for publication in Nature Astronom

    Gamma-ray Observations Under Bright Moonlight with VERITAS

    Full text link
    Imaging atmospheric Cherenkov telescopes (IACTs) are equipped with sensitive photomultiplier tube (PMT) cameras. Exposure to high levels of background illumination degrades the efficiency of and potentially destroys these photo-detectors over time, so IACTs cannot be operated in the same configuration in the presence of bright moonlight as under dark skies. Since September 2012, observations have been carried out with the VERITAS IACTs under bright moonlight (defined as about three times the night-sky-background (NSB) of a dark extragalactic field, typically occurring when Moon illumination > 35%) in two observing modes, firstly by reducing the voltage applied to the PMTs and, secondly, with the addition of ultra-violet (UV) bandpass filters to the cameras. This has allowed observations at up to about 30 times previous NSB levels (around 80% Moon illumination), resulting in 30% more observing time between the two modes over the course of a year. These additional observations have already allowed for the detection of a flare from the 1ES 1727+502 and for an observing program targeting a measurement of the cosmic-ray positron fraction. We provide details of these new observing modes and their performance relative to the standard VERITAS observations
    corecore