Abstract

Very-high-energy (VHE; >> 100 GeV) gamma-ray emission from the blazar RGB J2243+203 was discovered with the VERITAS Cherenkov telescope array, during the period between 21 and 24 December 2014. The VERITAS energy spectrum from this source can be fit by a power law with a photon index of 4.6±0.54.6 \pm 0.5, and a flux normalization at 0.15 TeV of (6.3±1.1)×1010 cm2s1TeV1(6.3 \pm 1.1) \times 10^{-10} ~ \textrm{cm}^{-2} \textrm{s}^{-1} \textrm{TeV}^{-1}. The integrated \textit{Fermi}-LAT flux from 1 GeV to 100 GeV during the VERITAS detection is (4.1±0.8)×10-8 cm-2s-1(4.1 \pm 0.8) \times 10^{\textrm{-8}} ~\textrm{cm}^{\textrm{-2}}\textrm{s}^{\textrm{-1}}, which is an order of magnitude larger than the four-year-averaged flux in the same energy range reported in the 3FGL catalog, (4.0±0.1×10-9 cm-2s-14.0 \pm 0.1 \times 10^{\textrm{-9}} ~ \textrm{cm}^{\textrm{-2}}\textrm{s}^{\textrm{-1}}). The detection with VERITAS triggered observations in the X-ray band with the \textit{Swift}-XRT. However, due to scheduling constraints \textit{Swift}-XRT observations were performed 67 hours after the VERITAS detection, not simultaneous with the VERITAS observations. The observed X-ray energy spectrum between 2 keV and 10 keV can be fitted with a power-law with a spectral index of 2.7±0.22.7 \pm 0.2, and the integrated photon flux in the same energy band is (3.6±0.6)×1013 cm2s1(3.6 \pm 0.6) \times 10^{-13} ~\textrm{cm}^{-2} \textrm{s}^{-1}. EBL model-dependent upper limits of the blazar redshift have been derived. Depending on the EBL model used, the upper limit varies in the range from z < 0.9<~0.9 to z < 1.1<~1.1

    Similar works