2,880 research outputs found

    The Densities of Planets in Multiple Stellar Systems

    Get PDF
    We analyze the effect of companion stars on the bulk density of 29 planets orbiting 15 stars in the Kepler field. These stars have at least one stellar companion within 2", and the planets have measured masses and radii, allowing an estimate of their bulk density. The transit dilution by the companion star requires the planet radii to be revised upward, even if the planet orbits the primary star; as a consequence, the planetary bulk density decreases. We find that, if planets orbited a faint companion star, they would be more volatile-rich, and in several cases their densities would become unrealistically low, requiring large, inflated atmospheres or unusually large mass fractions in a H/He envelope. In addition, for planets detected in radial velocity data, the primary star has to be the host. We can exclude 14 planets from orbiting the companion star; the remaining 15 planets in seven planetary systems could orbit either the primary or the secondary star, and for five of these planets the decrease in density would be substantial even if they orbited the primary, since the companion is of almost equal brightness as the primary. Substantial follow-up work is required in order to accurately determine the radii of transiting planets. Of particular interest are small, rocky planets that may be habitable; a lower mean density might imply a more volatile-rich composition. Reliable radii, masses, and thus bulk densities will allow us to identify which small planets are truly Earth-like.Comment: Accepted by AJ; 22 page

    A Higgs Conundrum with Vector Fermions

    Full text link
    Many models of Beyond the Standard Model physics involve heavy colored fermions. We study models where the new fermions have vector interactions and examine the connection between electroweak precision measurements and Higgs production. In particular, for parameters which are allowed by precision measurements, we show that the gluon fusion Higgs cross section and the Higgs decay branching ratios must be close to those predicted by the Standard Model. The models we discuss thus represent scenarios with new physics which will be extremely difficult to distinguish from the minimal Standard Model. We pay particular attention to the decoupling properties of the vector fermions.Comment: 34 pages, 15 figures. Version accepted for publication in Phys. Rev.

    A New Supersymmetric Extension of Conformal Mechanics

    Full text link
    In this paper a new supersymmetric extension of conformal mechanics is put forward. The beauty of this extension is that all variables have a clear geometrical meaning and the super-Hamiltonian turns out to be the Lie-derivative of the Hamiltonian flow of standard conformal mechanics. In this paper we also provide a supersymmetric extension of the other conformal generators of the theory and find their "square-roots". The whole superalgebra of these charges is then analyzed in details. We conclude the paper by showing that, using superfields, a constraint can be built which provides the exact solution of the system.Comment: 11 pages, no figure

    Influence of disordered porous media in the anomalous properties of a simple water model

    Full text link
    The thermodynamic, dynamic and structural behavior of a water-like system confined in a matrix is analyzed for increasing confining geometries. The liquid is modeled by a two dimensional associating lattice gas model that exhibits density and diffusion anomalies, in similarity to the anomalies present in liquid water. The matrix is a triangular lattice in which fixed obstacles impose restrictions to the occupation of the particles. We show that obstacules shortens all lines, including the phase coexistence, the critical and the anomalous lines. The inclusion of a very dense matrix not only suppress the anomalies but also the liquid-liquid critical point

    A New Superconformal Mechanics

    Get PDF
    In this paper we propose a new supersymmetric extension of conformal mechanics. The Grassmannian variables that we introduce are the basis of the forms and of the vector-fields built over the symplectic space of the original system. Our supersymmetric Hamiltonian itself turns out to have a clear geometrical meaning being the Lie-derivative of the Hamiltonian flow of conformal mechanics. Using superfields we derive a constraint which gives the exact solution of the supersymmetric system in a way analogous to the constraint in configuration space which solved the original non-supersymmetric model. Besides the supersymmetric extension of the original Hamiltonian, we also provide the extension of the other conformal generators present in the original system. These extensions have also a supersymmetric character being the square of some Grassmannian charge. We build the whole superalgebra of these charges and analyze their closure. The representation of the even part of this superalgebra on the odd part turns out to be integer and not spinorial in character.Comment: Superfield re-define

    Unresolved Binary Exoplanet Host Stars Fit as Single Stars: Effects on the Stellar Parameters

    Get PDF
    In this work, we quantify the effect of an unresolved companion star on the derived stellar parameters of the primary star if a blended spectrum is fit assuming the star is single. Fitting tools that determine stellar parameters from spectra typically fit for a single star, but we know that up to half of all exoplanet host stars may have one or more companion stars. We use high-resolution spectra of planet host stars in the Kepler field from the California-Kepler Survey to create simulated binaries; we select eight stellar pairs and vary the contribution of the secondary star, then determine stellar parameters with SpecMatch-Emp and compare them to the parameters derived for the primary star alone. We find that, in most cases, the effective temperature, surface gravity, metallicity, and stellar radius derived from the composite spectrum are within 2–3σ of the values determined from the unblended spectrum, but the deviations depend on the properties of the two stars. Relatively bright companion stars that are similar to the primary star have the largest effect on the derived parameters; in these cases, the stellar radii can be overestimated by up to 60%. We find that metallicities are generally underestimated, with values up to eight times smaller than the typical uncertainty in [Fe/H]. Our study shows that follow-up observations are necessary to detect or set limits on stellar companions of planetary host stars so that stellar (and planet) parameters are as accurate as possible

    Unresolved Binary Exoplanet Host Stars Fit as Single Stars: Effects on the Stellar Parameters

    Get PDF
    In this work we quantify the effect of an unresolved companion star on the derived stellar parameters of the primary star if a blended spectrum is fit assuming the star is single. Fitting tools that determine stellar parameters from spectra typically fit for a single star, but we know that up to half of all exoplanet host stars may have one or more companion stars. We use high-resolution spectra of planet host stars in the Kepler field from the California-Kepler Survey to create simulated binaries; we select 8 stellar pairs and vary the contribution of the secondary star, then determine stellar parameters with SpecMatch-Emp and compare them to the parameters derived for the primary star alone. We find that in most cases the effective temperature, surface gravity, metallicity, and stellar radius derived from the composite spectrum are within 2-3 σ\sigma of the values determined from the unblended spectrum, but the deviations depend on the properties of the two stars. Relatively bright companion stars that are similar to the primary star have the largest effect on the derived parameters; in these cases the stellar radii can be overestimated by up to 60%. We find that metallicities are generally underestimated, with values up to 8 times smaller than the typical uncertainty in [Fe/H]. Our study shows that follow-up observations are necessary to detect or set limits on stellar companions of planetary host stars so that stellar (and planet) parameters are as accurate as possible.Comment: Accepted by ApJ; 20 page
    • 

    corecore