In this paper we propose a new supersymmetric extension of conformal
mechanics. The Grassmannian variables that we introduce are the basis of the
forms and of the vector-fields built over the symplectic space of the original
system. Our supersymmetric Hamiltonian itself turns out to have a clear
geometrical meaning being the Lie-derivative of the Hamiltonian flow of
conformal mechanics. Using superfields we derive a constraint which gives the
exact solution of the supersymmetric system in a way analogous to the
constraint in configuration space which solved the original non-supersymmetric
model. Besides the supersymmetric extension of the original Hamiltonian, we
also provide the extension of the other conformal generators present in the
original system. These extensions have also a supersymmetric character being
the square of some Grassmannian charge. We build the whole superalgebra of
these charges and analyze their closure. The representation of the even part of
this superalgebra on the odd part turns out to be integer and not spinorial in
character.Comment: Superfield re-define