INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

EVALUATION OF THE $\mathrm{N}_{33}^{*} \mathrm{~N}$ WEAK COUPLING CONSTANTS BY MEANS OF CURRENT ALGEBRA

G. FURLAN
R. JENGO
AND
E. REMIDDI

1966

TRIESTE

EVALUATION OF THE $\mathrm{N}_{3}{ }^{*} \mathrm{~N}$ WEAK COUPLING CONSTANTS BY MEANS OF CURRENT ALGEBRA

G. FURLAN*
R. JENGO**
and
E. REMIDDI***

TRIESTE

February 1966

* Istituto di Fisica Teorica dell'Universita, Istituto Nazionale di Fisica Nucleare, Sottosezione di Trieste, Italy.
** Istituto di Fisica Teorica dell'Universita, Trieste, Italy.
*** On leave of absence from Scuola Normale Superiore, Pisa, Italy.

ABSTRACT

The form factors of the $\mathrm{N}_{33}^{*} \mathrm{~N}$ weak axial vectors are expressed in terms of the vector and axial vector form factors of the nucleon. A relation between the $N_{3}{ }_{3}{ }^{*} N \pi$ and $N N \pi$ coupling constants and an estimate of the mass of a hypothetical 1^{+}meson are also obtained.

EVALUATION OF THE $N_{3}^{*} N$ WEAK COUPLTNG CONSTANTS BY MEANS OF CURRENT ALCIEBRA

Recently many outstanding results have been obtained from the use of the equal time commutation relations which generate the algebra of a symmetry group, but without assuming invariance under it ${ }^{1)}$. In partioular the $S U(2) \otimes S U(2)$ algebra has ghown itself very promising, when supplemented by the PCAC assumption, which represents the bridge between strong interactions and weak phenomena.

In this note we investigate the form factors $H_{i}\left(\Delta^{2}\right)$ of the $N_{33}^{*} N$ weak axial vertex, which we define through

$$
\begin{equation*}
\langle n| A_{\mu}^{(-)}\left|N_{33}^{*+}\right\rangle=i \bar{u}\left[-H_{1} \delta_{\mu \nu}-\frac{i}{m_{\pi}} H_{2} p_{\nu} \gamma_{\mu}+\frac{1}{m_{\pi}^{2}} H_{3} p_{\nu}\left(p^{*}+p\right)_{\mu}+\frac{1}{m_{\pi}^{2}} H_{4} p_{\nu}\left(p-p^{*}\right)_{\mu}\right] u_{\nu} \tag{1}
\end{equation*}
$$ The form factors of the corresponding vector vertex $\langle n| V_{\mu}^{(-)}\left|N_{33}^{*+}\right\rangle$ can be derived by CVC from the electromagnetic ones occurring in electroproduction. From the knowledge of the two vertices it is posaible to caloulate the amplitude for the process

$$
V+N \rightarrow \mu+\underset{L}{N^{*}} N+\pi
$$

Our aim is to express the $H_{i}\left(\Delta^{2}\right)$ in terms of the vector and axial form factors of the nucleon. As byproducta we obtain a relation between the $N_{33}^{*} N \pi$ and $N N T$ coupling constants, which is well satisfied experimentally, and an estimate of the mass of an hypothetical 1^{+}meson, provided the weak axial form factors are dominated by its pole.

We start by considering the following commutators of the $\operatorname{SU}(2) \times \operatorname{SU}(2)$ algebra

$$
\begin{align*}
& {\left[\overline{\bar{I}}^{(3)}, A_{\mu}^{(3)}\right]=0} \tag{2}\\
& {\left[\overline{\bar{I}}^{(1)}, A_{\mu}^{(-1}\right]=2 V_{\mu}^{3}} \tag{3}
\end{align*}
$$

where V_{μ}, A_{μ} are the vector and axial vector currents, $\overline{\bar{I}}=\int A_{0}^{i} d \bar{x}, \quad A_{\mu}^{-}=A_{\mu}^{1}-i A_{\mu}^{2}$ etc, and we use isotopic spin to relate, for instance, A_{μ}^{3} to A_{μ}^{-}.

We take the matrix elements of EggS. 2), 3) between nucleon states $\left|N_{1}\right\rangle,\left|N_{2}\right\rangle$, of momenta P_{1}, P_{2}. According to the coveriant method of ref. 2), we introduce

$$
B_{\mu}^{(i, j)}=\int d^{4} x \theta\left(-x_{0}\right) e^{-i q x}\left\langle N_{2}\right|\left[\bar{D}^{(i)}(x), A_{\mu}^{(j)}(0)\right]\left|N_{1}\right\rangle, \bar{D}=\partial_{r} A_{r}
$$

so that from Eq.s 2), 3) we get the "low energy theorems"

$$
\begin{align*}
& \lim _{q \rightarrow 0} B_{\mu}^{(3,3)}=0 \tag{4}\\
& \lim _{q \rightarrow 0} B_{\mu}^{(+,-)}=2\left\langle N_{2}\right| V_{\mu}{ }^{3}\left|N_{1}\right\rangle \tag{5}
\end{align*}
$$

For a further analysis of the sum rules 4), 5) we treat any $B_{\mu}^{(i, j)}$ according to dispersion relation techniques. To this purpose we introduce the scalar variables

$$
\Delta^{2}=\left(p_{2}-p_{1}\right)^{2} \geq 0, \quad p_{1} \cdot q-p_{2} \cdot q=-m \nu
$$

where we impose $q^{2}=0, q \cdot \Delta=0$.
Then we decompose $B_{\mu}^{(i, j)}$ into invariant functions and we assume
for each of them an unsubtracted dispersion relation in V, at fixed Δ^{2}, i.e.

$$
\begin{aligned}
B \mu & =\Sigma_{s} M_{\mu}^{s} B^{s}\left(\nu, \Delta^{2}\right) \\
B^{s}\left(\nu, \Delta^{2}\right) & =\frac{1}{\pi} \int \frac{A_{I}^{(s)}\left(v^{\prime}, \Delta^{2}\right)}{v^{\prime}-v} d v^{\prime}-\frac{1}{\pi} \int \frac{H_{I}^{(s)}\left(v^{\prime}, \Delta^{2}\right)}{v^{\prime}-v} d \nu^{\prime}
\end{aligned}
$$

where the $A_{I_{1}}{ }^{(5)}$ can be deduced from the general quantities $A_{I}=\frac{i}{2} \sum_{\alpha}(2 \pi)^{4} \delta\left(p_{2}+q-p_{\alpha}\right)\left\langle N_{2}\right| \bar{D}|\alpha\rangle\langle\alpha| \cdot A_{\mu}\left|N_{1}\right\rangle$ $A_{\text {II }}=\frac{i}{2} \sum_{\alpha}(2 \pi)^{4} \delta\left(p_{1}-q-p_{\alpha}\right)\left\langle N_{2}\right| A_{\mu}|\alpha\rangle\langle\alpha| \bar{D}\left|N_{1}\right\rangle$ Owing to the limit $q \rightarrow 0(\nu \rightarrow 0)$ involved in our Eq.s 4), 5) only some M_{μ}^{S} survive and they are chosen to be $\left(p_{1}+p_{c}\right)_{\mu}\left(p_{2}-p_{1}\right)_{\mu}, \gamma_{\mu}$. For a practical evaluation we keep as intermediate states the nucleon and the $\mathbb{N}_{33}{ }^{*}(1236)$ resonance. Such an approximation has . shown itself rather satisfactory in previous works ${ }^{3,4 \text {), to }}$ which we refer a discussion of its validity. To express the matrix elements of $\bar{D} \quad$ in terms of the physical vertices we use the relation

$$
\begin{equation*}
\langle\alpha| \bar{D}|\beta\rangle=-\frac{\sqrt{2} w m_{\pi}^{2}}{\left(p_{\alpha}-p_{\beta}\right)^{2}+w_{n}^{2}} \frac{r_{A}}{g}\langle\alpha| j_{n}^{(-)}|\beta\rangle \tag{6}
\end{equation*}
$$

derived assuming the dominance of the pion pole in $\left(p_{\alpha}-p_{\beta}\right)^{2}$. The vertices we need are

$$
\begin{aligned}
& \left\langle p_{2}\right| \cdot j_{\pi}^{(3)}\left|p_{1}\right\rangle=i g \bar{u}_{2} \gamma_{5} u_{1}, \\
& \left\langle p_{2}\right| j_{\pi}^{(3)}\left|N_{33}^{*+}\right\rangle=\sqrt{\frac{2}{3}} \frac{\lambda}{m_{\pi}} \bar{u}_{2} u_{\nu}\left(p^{*}-p_{2}\right)_{\nu},
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle p_{2}\right| V_{\mu}^{3}\left|p_{1}\right\rangle=\frac{i}{2} \bar{u}_{2}\left[F_{1}^{v} \gamma_{\mu}-\frac{i}{4 \mu} F_{2}^{v}\left(\gamma_{\mu} \gamma_{\gamma}-\gamma_{\gamma} \gamma_{\mu}\right)\left(p_{2}-p_{1}\right)_{\mu}\right] u_{1} \\
& \left\langle n_{2}\right| A_{\mu}^{-}\left|p_{1}\right\rangle=\bar{u}_{2}\left[i r_{\lambda} G \gamma_{5} \gamma_{\mu}+\beta \gamma_{5}\left(p_{2}-p_{1}\right)_{\mu}\right] u_{1}
\end{aligned}
$$

where $F_{1}^{V}(0)=1, F_{2}^{V}(0)=3.71, \sigma(0)=1, x_{A} \simeq-1.18, \beta(0) \simeq-2 m x_{A} / m_{\pi}^{2}$.
With these definitions, we obtain one relation from the sum
rule (4)

$$
\begin{equation*}
\frac{m \lambda}{\sqrt{6} m_{\pi} g} \frac{M+m}{M}\left[\frac{1}{3} H_{1}-\frac{M}{3 m_{\pi}} H_{2}+\frac{M^{2}}{m^{2} \pi} g_{+} H_{4}\right]=\frac{1}{4} M \beta \tag{7}
\end{equation*}
$$

and two relations from the sum rule 5), by comparing the terms in γ_{μ} and $\left(p_{1}+p_{2}\right){ }_{\mu}$ of its l.h.s. and r.h.E.

$$
\begin{aligned}
& r_{A} \frac{m \lambda}{\sqrt{6} m_{\pi} g} \frac{M+m}{M}\left[\frac{2}{3} H_{1}-\frac{2 M}{m_{\pi}} \rho-H_{2}\right]=\pi_{A}^{2} G-F_{1}^{V}-F_{2}^{V} \\
& r_{A} \frac{\mu \lambda}{\sqrt{6} m_{n} g} \frac{M+m}{M}\left[-\frac{1}{3} H_{1}-\frac{M}{3 u_{n}} H_{2}+\frac{M^{2}}{m_{\pi}^{2}} \rho_{+} H_{3}\right]=\frac{M}{4 m^{m}} F_{2}^{V}
\end{aligned}
$$

whore $\rho_{ \pm}=1 \pm \frac{\mu}{3 M}-\frac{M^{2}+\mu^{2}}{3 M^{2}}-\frac{\Delta^{2}}{3 M^{2}}$.
Choosing in Eq. 6) $|\alpha\rangle$ and $|\beta\rangle$ to be a nucleon and an N_{33}^{*} state, wo can add another relation

$$
-H_{4}+\frac{M-m_{n}}{m_{n}} H_{2}-\frac{M^{2}-u^{2}}{w_{n}^{2}} H_{3}-\frac{\Delta^{2}}{w_{n}^{2}} H_{4}=-r_{A} \frac{\sqrt{2} \lambda \mu_{1}}{\sqrt{3} g m_{\pi}} \frac{u^{2} \pi}{\Delta^{2}+u_{n}^{2}} \text { (10) }
$$

Thus we have at our disposal four equations from which, in principle, we can evaluate the four form factors $H_{i}\left(\Delta^{2}\right)$ in terms of $F_{1}{ }^{V}, F_{2}{ }^{V}, G$ and β.

It is known that the pion pole is presont in $\beta\left(\Delta^{2}\right)$ and $H_{4}\left(\Delta^{2}\right)$ only. Our equations should in principle hold for spacelike Δ^{2}, but we can extrapolate them until the pion pole $\Delta^{2}=-\mu_{\pi}^{2}$, owing to the smallness of μ_{n}. By comparing the residua of $H_{4}\left(\Delta^{2}\right)$ as given by Eq.s 7), 10) we get

$$
\begin{equation*}
\frac{\lambda^{2}}{g^{2}}=\frac{g m^{2} \pi M^{2}}{2 m(M+m)^{2}(2 M-\mu)} \tag{11}
\end{equation*}
$$

This gives $\lambda=1.90$, while the experimental value ${ }^{5)}$ turns out to be 2.12. The agreement can be considered satisfactory, and the correotions due to the higher states are seen to give a 10% oontribution, as expeoted on the basis of the discussion given in ref. 3), 4). To get a better appreciation of this result, we recall that in a treatment of πN scattoring where the N_{33} is considered a true particie, unitarity considerations give, in the static Iimit ${ }^{6)}$,

$$
\begin{equation*}
\frac{\lambda^{2}}{g^{2}}=\frac{9}{8} \frac{\omega^{2} \pi}{\omega^{3}} \frac{\left.\omega^{*}+\omega\right)}{\omega^{3}} \tag{12}
\end{equation*}
$$

with $\omega^{*}=M-m$. Wo note that, in the "static limit"
$\frac{M}{(M+m)^{2}(2 M-w)} \rightarrow \frac{1}{4 m^{2}}$, the Eq.s 11) and 12) ooinoide. Using Eq. 11), the Eq.s 7) - 10) give, at $\Delta^{2}=0$

$$
\begin{align*}
& H_{1}(0)=-0.41 \\
& H_{2}(0)=-1.13 \tag{13}\\
& H_{3}(0)=-0.088 \\
& H_{4}(0)=0.86
\end{align*}
$$

We can remark that our $H_{1}(0)$ is much smaller than the one estimated by Berman and Veltman 7) by means of Eq. 10) by neglecting terms in $H_{2}(0)$ and $H_{3}(0)$.

Standard dispersive treatment in the Δ^{2} channel suggests that a 1^{+}meson (if it exists) might dominate the weak form factors $G\left(\Delta^{2}\right), H_{i}\left(\Delta^{2}\right) i=1,2,3$, so that

$$
G\left(\Delta^{2}\right)=\frac{H_{i}\left(\Delta^{2}\right)}{H_{i}(\Delta)}=\frac{\omega^{2} A}{\Delta^{2}+4 u_{A}^{2}}
$$

$$
i=1,2,3
$$

where m_{A} is the meson mass. We can try to estimate it by looking at the form factors slope at $\Delta^{2}=0$. In Eq.s 7), 10) the terms with the pion pole are enhanced in taking derivatives, masking the smoother behaviour of the other terms. From Eq.s 8),9) assuming $F_{1}^{v}\left(\Delta^{2}\right)=F_{2}^{v}\left(\Delta^{2}\right) / 3 \cdot 71=m_{S}^{2} /\left(\Delta^{2}+m_{3}^{2}\right)$, we obtain respectively $m_{A}=1.07 \mathrm{Gev}$ and $m_{A}=1.18$ Gev.

In a previous work ${ }^{4}$), from the commutators

$$
\left[\bar{I}^{(3)}, V_{\mu}^{(3)}\right]=0 \quad\left[\bar{I}(-), V_{\mu}^{(3)}\right]=A_{\mu}^{(-1)}
$$

and in the same approximation as above, we derived

$$
G\left(\Delta^{2}\right)=F_{1}^{v}\left(\Delta^{2}\right)+\frac{\Delta^{2}}{4 \omega^{2}} F_{2}^{V}\left(\Delta^{2}\right)
$$

From the slope at $\Delta^{2}=0$, we obtained $m_{A}=1.24$ Gev (in a more refined calculation of $G\left(\Delta^{2}\right)$ the result was 1.1 Gev). The agreemont anong the various estimates seems to be rather encouraging.

References

1) M. Gell-Mann, Phys. Rev. 125, 1067 (1962).
2) S. Fubini, G. Furlan and C. Rossetti, Nuovo Cimento A 40, 1171 (1965).
3) S. Fubini, G. Furlan and C. Rossetti, Nuovo Cimento (to be published).
4) G. Furlan, R. Jengo and E. Remiddi, Istituto di Fisica di Trieste, preprint (submitted to Nuovo Cimento).
5) A. H. Rosenfeld, A. Barbaro-Galtieri, W. H. Berkas, P. L. Bastion, J. Kirz and M. Roos, UCRL 8030-Part I, August 1965.
6) D. Amati and S. Fubini, Annual Review of Nuclear Sciance 12, 359 (1962), Eq. (10.13).
7) S. M. Berman and M. Veltman, Nuovo Cimento 38, 993 (1965).

Available from the Office of the Scientific Information and Documentation Officer, International Centre for Theoretical Physics, Piazza Oberdan 6, TRIESTE, Italy

