132 research outputs found

    A rapid and non-destructive method for spatial–temporal quantification of colonization by Pseudomonas syringae pv. tomato DC3000 in Arabidopsis and tomato

    Get PDF
    Background The bacterial leaf pathogen Pseudomonas syringae pv tomato (Pst) is the most popular model pathogen for plant pathology research. Previous methods to study the plant-Pst interactions rely on destructive quantification of Pst colonisation, which can be labour- and time-consuming and does not allow for spatial–temporal monitoring of the bacterial colonisation. Here, we describe a rapid and non-destructive method to quantify and visualise spatial–temporal colonisation by Pst in intact leaves of Arabidopsis and tomato. Results The method presented here uses a bioluminescent Pst DC3000 strain that constitutively expresses the luxCDABE operon from Photorhabdus luminescens (Pst::LUX) and requires a common gel documentation (Gel Doc) system with a sensitive CCD/CMOS camera and imaging software (Photoshop or Image J). By capturing bright field and bioluminescence images from Pst::LUX-infected leaves, we imaged the spatiotemporal dynamics of Pst infection. Analysis of bioluminescence from live Pst bacteria over a 5-day time course after spray inoculation of Arabidopsis revealed transition of the bacterial presence from the older leaves to the younger leaves and apical meristem. Colonisation by Pst:LUX bioluminescence was obtained from digital photos by calculating relative bioluminescence values, which is adjusted for bioluminescence intensity and normalised by leaf surface. This method detected statistically significant differences in Pst::LUX colonisation between Arabidopsis genotypes varying in basal resistance, as well as statistically significant reductions in Pst::LUX colonisation by resistance-inducing treatments in both Arabidopsis and tomato. Comparison of relative bioluminescence values to conventional colony counting on selective agar medium revealed a statistically significant correlation, which was reproducible between different Gel Doc systems. Conclusions We present a non-destructive method to quantify colonisation by bioluminescent Pst::LUX in plants. Using a common Gel Doc system and imaging software, our method requires less time and labour than conventional methods that are based on destructive sampling of infected leaf material. Furthermore, in contrast to conventional strategies, our method provides additional information about the spatial–temporal patterns of Pst colonisation

    Lipoprotein glomerulopathy treated with LDL-apheresis (Heparin-induced Extracorporeal Lipoprotein Precipitation system): a case report.

    Get PDF
    INTRODUCTION: Lipoprotein glomerulopathy is a glomerulonephritis which was described for the first time by Saito in 1989 and is currently acknowledged as a separate nosological entity. It is histologically characterized by a marked dilatation of the glomerular capillaries and the presence of lipoprotein thrombi in the glomerular lumens. The dyslipidemic profile is similar to that of type III dyslipoproteinemia with Apolipoprotein E values that are often high; proteinuria and renal dysfunction are present. Proteinuria often does not respond to steroid and cytostatic treatments. The phenotypic expression of lipoprotein glomerulopathy is most probably correlated to a genetic alteration of the lipoprotein metabolism (mutation of the Apolipoprotein E coding gene). In literature, lipoprotein glomerulopathies have mainly been reported in Japanese and Chinese subjects, except for three cases in the Caucasian race, reported in France and the USA.CASE PRESENTATION: We describe the case of a 60-year-old female, Caucasian patient suffering from lipoprotein glomerulopathy, carrier of a new mutation on the Apolipoprotein E gene (Apolipoprotein E(MODENA)), and treated successfully with low density lipoprotein-apheresis with the Heparin induced extracorporeal lipoprotein precipitation system. After a first phase of therapeutic protocol with statins, the patient was admitted for nephrotic syndrome, renal failure and hypertension. Since conventional treatment alone was not able to control dyslipidemia, aphaeretic treatment with heparin-induced Extracorporeal Lipoprotein Precipitation - apheresis (HELP-apheresis) was started to maintain angiotensin converting enzyme inhibitor therapy for the treatment of hypertension. Treatment with HELP-apheresis led to a complete remission of the proteinuria in a very short time (four months), as well as control of hypercholesterolemia and renal function recovery.CONCLUSION: According to this case of lipoprotein glomerulopathy, we believe that renal damage expressed by proteinuria correlates to the levels of lipids and, furthermore, the treatment with HELP-apheresis, by lowering low-density lipoprotein cholesterol and triglycerides, may be considered as a therapeutic option in synergy with pharmacological treatment in the treatment of lipoprotein glomerulopathy

    Heritable induced resistance in Arabidopsis thaliana: tips and tools to improve effect size and reproducibility

    Get PDF
    Over a decade ago, three independent studies reported that pathogen- and herbivore-exposed Arabidopsis thaliana produces primed progeny with increased resistance. Since then, heritable induced resistance (h-IR) has been reported across numerous plant-biotic interactions, revealing a regulatory function of DNA (de)methylation dynamics. However, the identity of the epi-alleles controlling h-IR and the mechanisms by which they prime defense genes remain unknown, while the evolutionary significance of the response requires confirmation. Progress has been hampered by the relatively high variability, low effect size, and sometimes poor reproducibility of h-IR, as is exemplified by a recent study that failed to reproduce h-IR in A. thaliana by Pseudomonas syringae pv. tomato (Pst). This study aimed to improve h-IR effect size and reproducibility in the A. thaliana–Pst interaction. We show that recurrent Pst inoculations of seedlings result in stronger h-IR than repeated inoculations of older plants and that disease-related growth repression in the parents is a reliable marker for h-IR effect size in F1 progeny. Furthermore, RT-qPCR-based expression profiling of genes controlling DNA methylation maintenance revealed that the elicitation of strong h-IR upon seedling inoculations is marked by reduced expression of the chromatin remodeler DECREASE IN DNA METHYLATION 1 (DDM1) gene, which is maintained in the apical meristem and transmitted to F1 progeny. Two additional genes, MET1 and CHROMOMETHYLASE3 (CMT3), displayed similar transcriptional repression in progeny from seedling-inoculated plants. Thus, reduced expression of DDM1, MET1, and CMT3 can serve as a marker of robust h-IR in F1 progeny. Our report offers valuable information and markers to improve the effect size and reproducibility of h-IR in the A. thaliana–Pst model interaction

    Costs and benefits of transgenerational induced resistance in arabidopsis

    Get PDF
    Recent evidence suggests that stressed plants employ epigenetic mechanisms to transmit acquired resistance traits to their progeny. However, the evolutionary and ecological significance of transgenerational induced resistance (t-IR) is poorly understood because a clear understanding of how parents interpret environmental cues in relation to the effectiveness, stability, and anticipated ecological costs of t-IR is lacking. Here, we have used a full factorial design to study the specificity, costs, and transgenerational stability of t-IR following exposure of Arabidopsis thaliana to increasing stress intensities by a biotrophic pathogen, a necrotrophic pathogen, and salinity. We show that t-IR in response to infection by biotrophic or necrotrophic pathogens is effective against pathogens of the same lifestyle. This pathogen-mediated t-IR is associated with ecological costs, since progeny from biotroph-infected parents were more susceptible to both necrotrophic pathogens and salt stress, whereas progeny from necrotroph-infected parents were more susceptible to biotrophic pathogens. Hence, pathogen-mediated t-IR provides benefits when parents and progeny are in matched environments but is associated with costs that become apparent in mismatched environments. By contrast, soil salinity failed to mediate t-IR against salt stress in matched environments but caused non-specific t-IR against both biotrophic and necrotrophic pathogens in mismatched environments. However, the ecological relevance of this non-specific t-IR response remains questionable as its induction was offset by major reproductive costs arising from dramatically reduced seed production and viability. Finally, we show that the costs and transgenerational stability of pathogen-mediated t-IR are proportional to disease pressure experienced by the parents, suggesting that plants use disease severity as an environmental proxy to adjust investment in t-IR

    A Compensatory Mutation Provides Resistance to Disparate HIV Fusion Inhibitor Peptides and Enhances Membrane Fusion

    Get PDF
    Fusion inhibitors are a class of antiretroviral drugs used to prevent entry of HIV into host cells. Many of the fusion inhibitors being developed, including the drug enfuvirtide, are peptides designed to competitively inhibit the viral fusion protein gp41. With the emergence of drug resistance, there is an increased need for effective and unique alternatives within this class of antivirals. One such alternative is a class of cyclic, cationic, antimicrobial peptides known as θ-defensins, which are produced by many non-human primates and exhibit broad-spectrum antiviral and antibacterial activity. Currently, the θ-defensin analog RC-101 is being developed as a microbicide due to its specific antiviral activity, lack of toxicity to cells and tissues, and safety in animals. Understanding potential RC-101 resistance, and how resistance to other fusion inhibitors affects RC-101 susceptibility, is critical for future development. In previous studies, we identified a mutant, R5-tropic virus that had evolved partial resistance to RC-101 during in vitro selection. Here, we report that a secondary mutation in gp41 was found to restore replicative fitness, membrane fusion, and the rate of viral entry, which were compromised by an initial mutation providing partial RC-101 resistance. Interestingly, we show that RC-101 is effective against two enfuvirtide-resistant mutants, demonstrating the clinical importance of RC-101 as a unique fusion inhibitor. These findings both expand our understanding of HIV drug-resistance to diverse peptide fusion inhibitors and emphasize the significance of compensatory gp41 mutations. © 2013 Wood et al

    Urine Proteome Analysis May Allow Noninvasive Differential Diagnosis of Diabetic Nephropathy

    Get PDF
    AbstractObjective: Chronic renal insufficiency and/or proteinuria in type 2 diabetes may stem from chronic renal diseases (CKD) other than classic diabetic nephropathy (DN) in over one third of cases. We interrogated urine proteomic profiles generated by SELDI-TOF/MS with the aim to isolate a set of biomarkers able to reliably identify biopsy-proven DN and to establish a stringent correlation with the different patterns of renal injury. Research design and methods: Ten mug urine proteins from 190 subjects [20 healthy subjects (HS), 20 normoalbuminuric (NAD) and 18 microalbuminuric (MICRO) diabetic patients, and 132 patients with biopsy-proven nephropathy (65 DN, 10 diabetics with non-diabetic CKD (nd-CKD) and 57 non-diabetic patients with CKD)] were run by CM10 ProteinChip array and analysed by supervised learning methods (CART analysis). Results: The classification model correctly identified 75% NAD, 87.5% MICRO and 87.5% DN when applied to a blinded testing set. Most importantly, it was able to reliably differentiate DN from nd-CKD in both diabetic and non-diabetic patients. Among the best predictors of the classification model, we identified and validated 2 proteins, ubiquitin and ss2-microglobulin. Conclusions: Our data suggest the presence of a specific urine proteomic signature able to reliably identify type 2 diabetic patients with diabetic glomerulosclerosis

    Identification and characterisation of hypomethylated DNA loci controlling quantitative resistance in Arabidopsis

    Get PDF
    Variation in DNA methylation enables plants to inherit traits independently of changes to DNA sequence. Here, we have screened an Arabidopsis population of epigenetic recombinant inbred lines (epiRILs) for resistance against Hyaloperonospora arabidopsidis (Hpa). These lines share the same genetic background, but show variation in heritable patterns of DNA methylation. We identified 4 epigenetic quantitative trait loci (epiQTLs) that provide quantitative resistance without reducing plant growth or resistance to other (a)biotic stresses. Phenotypic characterisation and RNA-sequencing analysis revealed that Hpa-resistant epiRILs are primed to activate defence responses at the relatively early stages of infection. Collectively, our results show that hypomethylation at selected pericentromeric regions is sufficient to provide quantitative disease resistance, which is associated with genome-wide priming of defence-related genes. Based on comparisons of global gene expression and DNA methylation between the wild-type and resistant epiRILs, we discuss mechanisms by which the pericentromeric epiQTLs could regulate the defence-related transcriptome
    corecore