48 research outputs found

    Bell Measurements and Observables

    Full text link
    A general matrix approach to study entangled states is presented, based on operator completeness relations. Bases of unitary operators are considered, with focus on irreducible representations of groups. Bell measurements for teleportation are considered, and robustness of teleportation to various kinds of non idealities is shown.Comment: 11 pages. Elsart styl

    Quantum teleportation with squeezed vacuum states

    Get PDF
    We show how the partial entanglement inherent in a two mode squeezed vacuum state admits two different teleportation protocols. These two protocols refer to the different kinds of joint measurements that may be made by the sender. One protocol is the recently implemented quadrature phase approach of Braunstein and Kimble[Phys. Rev. Lett.{\bf 80}, 869 (1998)]. The other is based on recognising that a two mode squeezed vacuum state is also entangled with respect to photon number difference and phase sum. We show that this protocol can also realise teleportation, however limitations can arise due to the fact that the photon number spectrum is bounded from below by zero. Our examples show that a given entanglement resource may admit more than a single teleportation protocol and the question then arises as to what is the optimum protocol in the general case

    Simultaneous intraportation of many quantum states within the quantum computing network

    Full text link
    A scheme is proposed for simultaneous intraportation of many unknown quantum states within a quantum computing network. It is shown that our scheme, much different from the teleportation in the strict sense, can be very similar to the original teleportation proposal[Phys.Rev.Lett.{\bf 70} (1993)1895)] and the efficiency of the scheme for quantum state transmission is very high. The possible applications of our scheme are also discussed.Comment: 14 pages with 9 figure

    New, efficient and robust, fiber-based quantum key distribution schemes

    Get PDF
    We present a new fiber based quantum key distribution (QKD) scheme which can be regarded as a modification of an idea proposed by Inoue, Waks and Yamamoto (IWY) [1]. The scheme described here uses a single phase modulator and two differential delay elements in series at the transmitter that form an interferometer when combined with a third differential delay element at the receiver. The protocol is characterized by a high efficiency, reduced exposure to an attack by an eavesdropper, and higher sensitivity to such an attack when compared to other QKD schemes. For example, the efficiency with which transmitted data contribute to the private key is 3/4 compared with 1/4 for BB84 [2]. Moreover, an eavesdropper can aquire a maximum of 1/3 of the key which leads to an error probability in the private key of 1/3. This can be compared to 1/2 and 1/4 for these same parameters in both BB84 and IWY. The combination of these considerations should lead to increased range and key distribution rate over present fiber-based QKD schemes.Comment: 4 pages, 5 figures, 1 equatio

    Quantum cryptography with a predetermined key, using continuous variable Einstein-Podolsky-Rosen correlations

    Get PDF
    Correlations of the type discussed by EPR in their original 1935 paradox for continuous variables exist for the quadrature phase amplitudes of two spatially separated fields. These correlations were experimentally reported in 1992. We propose to use such EPR beams in quantum cryptography, to transmit with high efficiency messages in such a way that the receiver and sender may later determine whether eavesdropping has occurred. The merit of the new proposal is in the possibility of transmitting a reasonably secure yet predetermined key. This would allow relay of a cryptographic key over long distances in the presence of lossy channels.Comment: 11 pages,3 figures, changes are important,presented at QELS(May,2000) San Francisc

    A Measure of Stregth of an Unextendible Product Basis

    Get PDF
    A notion of strength of an unextendible product basis is introduced and a quantitative measure for it is suggested with a view to providing an indirect measure for the bound entanglement of formation of the bound entangled mixed state associated with an unextendible product basis.Comment: 4 pages, Latex, 1 figure, remarks, criticisms welcom

    Quantum cryptography with squeezed states

    Get PDF
    A quantum key distribution scheme based on the use of displaced squeezed vacuum states is presented. The states are squeezed in one of two field quadrature components, and the value of the squeezed component is used to encode a character from an alphabet. The uncertainty relation between quadrature components prevents an eavesdropper from determining both with enough precision to determine the character being sent. Losses degrade the performance of this scheme, but it is possible to use phase-sensitive amplifiers to boost the signal and partially compensate for their effect.Comment: 15 pages, no figure

    Universal teleportation with a twist

    Get PDF
    We give a transfer theorem for teleportation based on twisting the entanglement measurement. This allows one to say what local unitary operation must be performed to complete the teleportation in any situation, generalizing the scheme to include overcomplete measurements, non-abelian groups of local unitary operations (e.g., angular momentum teleportation), and the effect of non-maximally entangled resources.Comment: 4 pages, 1 figur

    Soliton Squeezing in a Mach-Zehnder Fiber Interferometer

    Get PDF
    A new scheme for generating amplitude squeezed light by means of soliton self-phase modulation is experimentally demonstrated. By injecting 180-fs pulses into an equivalent Mach-Zehnder fiber interferometer, a maximum noise reduction of 4.4±0.34.4 \pm 0.3 dB is obtained (6.3±0.66.3 \pm 0.6 dB when corrected for losses). The dependence of noise reduction on the interferometer splitting ratio and fiber length is studied in detail.Comment: 5 pages, 4 figure

    Detection of entanglement with few local measurements

    Full text link
    We introduce a general method for the experimental detection of entanglement by performing only few local measurements, assuming some prior knowledge of the density matrix. The idea is based on the minimal decomposition of witness operators into a pseudo-mixture of local operators. We discuss an experimentally relevant case of two qubits, and show an example how bound entanglement can be detected with few local measurements.Comment: 5 pages + 1 figur
    corecore