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S. Chaturvedi∗

Department of Physics, University of Hyderabad, Hyderabad 500046, India

(February 1, 2008)

A notion of strength of an unextendible product basis is introduced and a quantitative measure
for it is suggested with a view to providing an indirect measure for the bound entanglement of
formation of the bound entangled mixed state associated with an unextendible product basis.

Quantum nonlocality [1] has, for long, owing to well known historical reasons, been associated with entangled
states - states in a tensor product Hilbert space with which are not of a product type. Such states, which have not
only generated numerous fascinating and intricate mathematical concepts and questions pertaining to identification,
quantification and classification of entanglement, but have also played a key role in the development of such novel
ideas as quantum teleportation [2], quantum cryptography [3], quantum dense coding [4] and quantum computation
[5] some of which have aso been experimentally realised [6]. Recent years have seen the advent of a new kind of
nonlocality- nonlocality without entanglement [7], associated with, not just a single state, but with a set of orthogonal
product states on a tensor product Hilbert space such that there is no state of a product type orthogonal to all the
members of the set. The nonlocality associated with such a set, referred to as an unextendible product basis(UPB) [8],
manifests itself through the impossibility of distinguishing between the members of the set through local operations
and classical communication. In contrast to the nonlocality associated with the entangled states, which arises at the
level of states in tensor product Hilbert spaces, that associated with a UPB may be thought of as a reflection of the
non commutativity at the level of operators [9]. Besides exhibiting nonlocality without entanglement, UPB’s have
ramifications for entanglement as well, in that they enable explicit constructions of bound entangled mixed states [10]-
entangled mixed states with a positive Peres transpose [11]. The very first explicit examples of UPB’s, that appeared
in the pioneering work of Bennett et al [8], were - the Pyramid and the Tiles. These set of states constitute minimal
UPB’s (UPB’s with the smallest permissible dimension) on H3

⊗H3 and are explicitly given below:

• Pyramid: ψi = vi ⊗ wi ; i = 0, . . . , 4 where

vi = N(cos
2πi

5
, sin

2πi

5
, h) ; h =

√

− cos
4π

5
; N =

1
√

1 + | cos 4π
5 |
, (0.1)

wi = v2i mod 5 (0.2)

• Tiles ψi = vi ⊗ wi ; i = 0, · · · , 4 where

v0 = |0 >; v1 =
1√
2
(|0 > −|1 >); v2 = |2 >; v3 =

1√
2
(|1 > −|2 >); v4 =

1√
3
(|0 > +|1 > +|2 >), (0.3)

w0 =
1√
2
(|0 > −|1 >);w1 = |2 >;w2 =

1√
2
(|1 > −|2 >);w3 = |0 >;w4 =

1√
3
(|0 > +|1 > +|2 >). (0.4)

In a subsequent work, DiVincenzo et al [12] gave general constructions of several UPB’s which are listed below

• Gen Shifts:2k-dimensional (minimal) UPB on
⊗2k−1

i=1 H2.

• Gen Pyramids:p-dimensional (minimal) UPB on
⊗n

i=1 H3 with n such that 2n+ 1 = p, a prime.

• Quad Res: p-dimensional (minimal) UPB on Hn

⊗

Hn with n such that 2n − 1 = p, a prime of the form
4m+ 1.

• Gen Tiles1:(n− 1)2-dimensional(non minimal) UPB on Hn

⊗Hn with n even.

• Gen Tiles2: (nm− 2m+ 1)- dimensional (non minimal) UPB on Hm

⊗Hn with n ≥ m ; n > 3 ; m ≥ 3.
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The present work is inspired by a result quoted in [8] that while the bound entangled of formation [10] for the mixed
state associated with the Pyramid UPB is 0.232635 ebits, that for the state associated with the Tiles UPB turns
out to be 0.213726 ebits. In view of the fact that the calculation of these numbers involves extensive numerical
searches, one is led to the question whether it is possible to associate with each UPB a number as a kind of measure
of strength of that UPB which would, in turn, provide an indirect measure of the bound entanglement of formation
of the associated bound entangled mixed state. This work is an effort in this direction.

To motivate the definition of the strength of a UPB, we begin by examining the structure of the scalar products
among the vi’s and the wi’s for the Pyramid. This UPB is characterized by (v0, v2) = (v2, v4) = (v4, v1) = (v1, v3) =
(v3, v0) = 0; (w0, w1) = (w1, w2) = (w2, w3) = (w3, w4) = (w4, w0) = 0 with the remaining scalar products non zero.
If any of the nonzero scalar products were to vanish, the resulting set will not be a UPB. It seems, therefore natural
to define the strength s of a UPB by the the magnitude of the product of the non-zero scalar products among the
vi’s and the wi’s. In the particular case of the Pyramid, the resulting expression can be compactly written as s =
|B5(v0, v1, v2, v3, v4) × B5(w0, w2, w4, w1, w3)|. Here B5(v0, v1, v2, v3, v4) ≡ (v0, v1)(v1, v2)(v2, v3)(v3, v4)(v4, v0) and
B5(w0, w2, w4, w1, w3) is similarly defined. (These objects can be identified with the fifth order Bargmann invariants
[13] associated with the set of vectors vi, wi, i = 0, · · · 4 repectively) The value of s turns out to be [(30

√
5− 66)/12]2.

Similarly, for the Tiles, we have (v0, v3) = (v3, v4) = (v4, v1) = (v1, v2) = (v2, v0) = 0; (w0, w1) = (w1, w3) =
(w3, w2) = (w2, w4) = (w4, w0) = 0 with the remaining scalar products non zero. The strength s of this UPB can
be written as s = |B5(v0, v1, v3, v2, v4)] × B5(w0, w2, w1, w4, w3)| and its value turns out to be (1/12)2, which is less
than that for the Pyramid. Thus we find that the Pyramid, in this sense, is stronger than the Tiles and one is
tempted to conclude that it is this strength which leads to a higher value for the bound entanglement of formation of
the associated bound entangled mixed state vis a vis the Tiles.

To probe further, the connection suggested above, between the strength and the entropy of bound entanglement of
formation of the associated bound entangled mixed state, we examine the six parameter family of UPB on H3

⊗

H3

constructed by DiVincenzo et al [12]

v0 = |1 >,
v1 = sin γB sin θB|0 > − sinγB cos θB|2 > + cos γBe

iφB |1 >,
v2 = |0 >, (0.5)

v3 = cos θB|0 > + sin θB|2 >,

v4 =
1

NB

(sin γB cos θBe
iφB |1 > + cosγB|2 > .

w0 = |0 >,
w1 = |1 >,
w2 = cos θA|0 > + sin θA|2 >, (0.6)

w3 = sin γA sin θA|0 > + cosγAe
iφA |1 > − sinγA cos θA|2 >,

w4 =
1

NA

(sin γA cos θAe
iφA |1 > + + cos γA|2 > .

where NA, B =
√

cos2 γA,B + sin2 γA,B cos2 θA,B. For this to be a UPB, we must have cos θA,B 6= 0, cosγA,B 6=
0, sin θA,B 6= 0. Further, as noted by DiVincenzo et al [12], this family contains Pyramid and Tiles UPB’s as special
cases corresponding to φA,B = 0, θA,B = γA,B = cos−1((

√
5 − 1)/2) and φA,B = 0, θA,B = γA,B = 3π/4. We now ask

the question whether the Pyramid, is in some sense, a privilleged member of this family. To this end, we compute
the expression for the strength of this family of UPB’s and find that

s = |B5(v0, v1, v3, v2, v4)] ×B5(w0, w2, w1, w4, w3)]

=

[

sin2 θA sin2 γA cos2 θA cos2 γA

cos2 γA + sin2 γA cos2 θA

]

×
[

sin2 θB sin2 γB cos2 θB cos2 γB

cos2 γB + sin2 γB cos2 θB

]

(0.7)

Note that s is independent of the phases φA,B. Setting all angles equal, θA,B = γA,B = θ we find that the resulting
expression has a maximum precisely at x ≡ cos θ = (

√
5− 1)/2 which, as noted above, corresponds to the Pyramid.

Thus, within the family of the UPB’s considered, the Pyramid has a unique position in that it has the maximum
strength and, if the connection to the bound entanglement of formation suggested above is correct, then one should find
that the bound entangled mixed state corresponding to the Pyramid has the highest entropy of bound entanglement
of formation within this family.
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Next, we turn to UPB’s on H3

⊗H3

⊗H3. The UPB’s constructed by DiVincenzo et al [12] are:

ψi = vi ⊗ v2i mod 7 ⊗ v3i mod 7 ; i = 0, · · · , 6 (0.8)

vi = N7(cos
2πi

7
, sin

2πi

7
, h7) ; h7 =

√

− cos
2mπ

7
; N7 =

1
√

1 + | cos 2mπ
7 |

. (0.9)

Here m takes two values 2 and 3 and thus we have two UPB’s. The UPB corresponding to m = 2 is referred to as
the Sept. We now wish to locate their places within the family of UPB’s on H3

⊗H3

⊗H3 on the basis of their
strengths. To this end, we have constructed a parametrized family of UPB’s on H3

⊗H3

⊗H3. Its members are as
follows:

ψi = vi ⊗ wi ⊗ ui ; i = 0, · · · , 6 (0.10)

v0 = |0 >,
v1 = N [(sin θ4 cos θ2 cos θ3e

i(λ−χ) − sin θ4 cos θ1 sin θ2 sin θ3)|0 >
+ (sin θ3 cos θ1 cos θ4e

−iµ − sin θ3 sin θ1 cos θ2 sin θ4e
−iχ)|1 > +(cos θ3 cos θ4e

i(λ−µ) − sin θ1 sin θ2 sin θ3 sin θ4)|2 >],

v2 = |1 >,
v3 = cos θ4e

iµ|0 > + sin θ4 sin θ2|1 > − sin θ4 cos θ2e
iχ|2 >, (0.11)

v4 = cos θ1|0 > + sin θ1|2 >,
v5 = cos θ2|1 > + sin θ2e

iχ|2 >,
v6 = sin θ3 sin θ1|0 > + cos θ3e

−iλ|1 > − sin θ3 cos θ1|2 > .

The vectors wi and ui are wi = v2i mod 7 and ui = v3i mod 7 respectively with a different set of parameters in each
case making a total of 21 parameters specifying the family. This is obviously a rather large family. To keep matters
simple, we consider a sub-family wherein the u’s and w’s have the same parameters as those in the v’s. For this
sub-family it turns out the strength s = |B7(v0, v1, v2, v3, v4, v5, v6)] × [B7(v0, v3, v6, v2, v5, v1, v4)]|3 depends on the
phases λ, µ and χ only through α = λ−χ and β = µ−χ. We now set all the angles equal to θ and α = β and obtain,
for s, the following expression

s = [f(x, y)]3 (0.12)

where

f(x, y) = |[ [x
9(1 − x2)6

√

4 + 4xy + x2(x4 − x2 + 1 + 2xy(x2 − 1))2(x6 + 4x4 − 4x2 + 1 + 2x3y(2x2 − 1)]

[(x4 − 3x2 + 1)2 + 2x2(1 − x2)(x4 − x2 + 1 + 2xy(x2 − 1)]2
]| (0.13)

with x = cos θ and y = cosα. The function f(x, y) is plotted in Fig 1 for −1 ≤ x ≤ 1 and 0 ≤ y ≤ 1. (We have
restricted the range of y to 0 ≤ y ≤ 1 owing to the symmetry f(x, y),= f(−x,−y))
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FIG. 1. Strength as a function of x and 1 − y
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The global maximum of this function is found to be located at y = 1 and x = cos θ = (cos 6π
7 −cos 4π

7 )/(1+ | cos 4π
7 |)

which corresponds to the Sept.
The next lower maximum occurs at y = 1 i.e. α = 0 and x = cosθ = (cos 2π

7 − cos 6π
7 )/(1 + | cos 6π

7 |) which
corresponds to the UPB of DiVincenzo et al [12] with m = 3. Note that, in this case, there is a third local maximum
at x = 0.469. Thus we find that, within this family, the Sept is the strongest UPB.

To conclude, we have introduced a rather natural notion of strength of a a UPB and suggested that it could, in
turn, provide an indirect but calculable measure of the entropy of bound entanglement of formation of the associated
bound entangled state and perhaps also of the degree of distinguishability of the members of a UPB under local
operations and classical communication (if such a notion could be quanified). This measure, besides bringing out the
privilleged role of the Pyramid and Sept in their respective families, has two desirable properties:

• It vanishes when any of the parameters associated with a family of UPB’s takes a value such that the corre-
sponding set of vectors ceases to be a UPB.

• The strength of a UPB obtained by taking tensor product of two UPB’s is equal to the product of the individual
strengths.

Finally, we note that an optical realization of unextendible product bases has already been proposed [14] and it will
perhaps not be too long before it is experimentally implemented. We hope that the notion of strength of a UPB
introduced in this work will be useful in this context and will initiate further activity in this direction.
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