2,429 research outputs found

    Einfluss der Bodenerosion auf den C-Haushalt in der Agrarlandschaft (Uckermark)

    Get PDF
    Welchen Einfluss üben die verschiedenen Erosionsprozesse auf den C-Haushalt in Bodenlandschaften aus? Um die Frage zu beantworten, werden Quantitäten der erosionsbedingten lateralen C-Flüsse als auch der CO2-Quellen-/Senkenfunktion als Resultat erosionsinduzierter Ungleichgewichtszustände in einem komplexen erosionsbeeinflussten Hohlformeinzugsgebiet in der Uckermark ermittelt

    Wind erosion after steppe conversion in Kazakhstan

    Get PDF
    Semi-arid regions of Central Asia suffer from wind erosion due to expanding steppe conversion and unsustainable farming practices. Empirical data from field observations are needed to support the implementation of adapted management. In this study, a mobile wind tunnel was used for the first time in Kazakhstan to assess the soil's erodibility under real conditions. Field experiments were conducted on loamy sands with different initial conditions that are typical for the most erosive time of the year: a bare surface with a cloddy structure after recent steppe conversion, a weak crust on a plot with barley (Hordeum vulgare L.), and a plot with loose material in the rows of maize plants (Zea mays L.). Subsequently, different levels of mechanical stress (low, moderate, high) were considered to analyze the effect of disruptive forces soils experience during field cultivation (light cultivator, disc harrow, tractor tires) on possible soil losses. The results of wind tunnel experiments showed already great differences under initial conditions. The cloddy structure of the recent steppe conservation had the lowest susceptibility against wind erosion due to a good aggregation and a large roughness, resulting in soil loss of 12 g m−2. The plot grown with barley was less affected by wind erosion due to the weak crust, smaller distances between plants, and leaves close to the ground (soil loss of 34 g m−2). Maize was also the most problematic crop in the study area because wind can blow below the plant canopy without considerable resistance during the early growth stages. Additionally, existing deposits in the maize rows from previous erosion events led to the highest soil loss of 1609 g m−2. Mechanical stress by seedbed preparation generally increased the erodible fraction, resulting in higher soil losses (light cultivator: 198 ± 129 g m−2, disc harrow: 388 ± 258 g m−2). The most severe disruption of soil structure occurred on tractor tire tracks, causing a loss of 2767 ± 1810 g m−2. Consequently, the pulverizing effect of tractor tires on dry soil must be considered a serious emission source. Comparing the soil organic carbon content of topsoil and eroded material showed that organic carbon was enriched only in the aeolian sediments of the recently converted plot (+69%). We conclude that soils after steppe conversion need to be treated with particular care from the very beginning so that severe events from the past are not repeated

    Low airborne tenacity and spread of ESBL-/AmpC-producing Escherichia coli from fertilized soil by wind erosion

    Get PDF
    ESBL-/AmpC-producing Escherichia coli from organic fertilizers were previously detected on soil surfaces of arable land and might be emitted by wind erosion. To investigate this potential environmental transmission path, we exposed ESBL-/AmpC-positive chicken litter, incorporated in agricultural soils, to different wind velocities in a wind tunnel and took air samples for microbiological analysis. No data exist concerning the airborne tenacity of ESBL-/AmpC-producing E. coli. Therefore, we explored the tenacity of two ESBL/AmpC E. coli strains and E. coli K12 in aerosol chamber experiments at different environmental conditions. In the wind tunnel, ESBL/AmpC-producing E. coli were detected in none of the air samples (n = 66). Non-resistant E. coli were qualitatively detected in 40.7% of air samples taken at wind velocities exceeding 7.3 m s(-1). Significantly increased emission of total viable bacteria with increasing wind velocity was observed. In the aerosol chamber trials, recovery rates of airborne E. coli ranged from 0.003% to 2.8%, indicating a low airborne tenacity. Concluding, an emission of ESBL/AmpC E. coli by wind erosion in relevant concentrations appears unlikely because of the low concentration in chicken litter compared with non-resistant E. coli and their low airborne tenacity, proven in the aerosol chamber trials

    Complex plant-derived organic aerosol as ice-nucleating particles – more than the sums of their parts?

    Get PDF
    Quantifying the impact of complex organic particles on the formation of ice crystals in clouds remains challenging, mostly due to the vast number of different sources ranging from sea spray to agricultural areas. In particular, there are many open questions regarding the ice nucleation properties of organic particles released from terrestrial sources such as decaying plant material. In this work, we present results from laboratory studies investigating the immersion freezing properties of individual organic compounds commonly found in plant tissue and complex organic aerosol particles from vegetated environments, without specifically investigating the contribution from biological particles, which may contribute to the overall ice nucleation efficiency observed at high temperatures. To characterize the ice nucleation properties of plant-related aerosol samples for temperatures between 242 and 267 K, we used the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud chamber and the Ice Nucleation SpEctrometer of the Karlsruhe Institute of Technology (INSEKT), which is a droplet freezing assay. Individual plant components (polysaccharides, lignin, soy and rice protein) were mostly less ice active, or similarly ice active, compared to microcrystalline cellulose, which has been suggested by recent studies to be a proxy for quantifying the primary cloud ice formation caused by particles originating from vegetation. In contrast, samples from ambient sources with a complex organic matter composition (agricultural soils and leaf litter) were either similarly ice active or up to 2 orders of magnitude more ice active than cellulose. Of all individual organic plant components, only carnauba wax (i.e., lipids) showed a similarly high ice nucleation activity as that of the samples from vegetated environments over a temperature range between 245 and 252 K. Hence, based on our experimental results, we suggest considering cellulose as being representative for the average ice nucleation activity of plant-derived particles, whereas lignin and plant proteins tend to provide a lower limit. In contrast, complex biogenic particles may exhibit ice nucleation activities which are up to 2 orders of magnitude higher than observed for cellulose, making ambient plant-derived particles a potentially important contributor to the population of ice-nucleating particles in the troposphere, even though major uncertainties regarding their transport to cloud altitude remain

    MERS-CoV at the animal–human interface: inputs on exposure pathways from an expert-opinion elicitation

    Get PDF
    Nearly 4 years after the first report of the emergence of Middle-East respiratory syndrome Coronavirus (MERS-CoV) and nearly 1800 human cases later, the ecology of MERS-CoV, its epidemiology, and more than risk factors of MERS-CoV transmission between camels are poorly understood. Knowledge about the pathways and mechanisms of transmission from animals to humans is limited; as of yet, transmission risks have not been quantified. Moreover the divergent sanitary situations and exposures to animals among populations in the Arabian Peninsula, where human primary cases appear to dominate, vs. other regions in the Middle East and Africa, with no reported human clinical cases and where the virus has been detected only in dromedaries, represents huge scientific and health challenges. Here, we have used expert-opinion elicitation in order to obtain ideas on relative importance of MERS-CoV risk factors and estimates of transmission risks from various types of contact between humans and dromedaries. Fourteen experts with diverse and extensive experience in MERS-CoV relevant fields were enrolled and completed an online questionnaire that examined pathways based on several scenarios, e.g., camels-camels, camels-human, bats/other species to camels/humans, and the role of diverse biological substances (milk, urine, etc.) and potential fomites. Experts believed that dromedary camels play the largest role in MERS-CoV infection of other dromedaries; however, they also indicated a significant influence of the season (i.e. calving or weaning periods) on transmission risk. All experts thought that MERS-CoV-infected dromedaries and asymptomatic humans play the most important role in infection of humans, with bats and other species presenting a possible, but yet undefined, risk. Direct and indirect contact of humans with dromedary camels were identified as the most risky types of contact, when compared to consumption of various camel products, with estimated 'most likely' incidence risks of at least 22 and 13% for direct and indirect contact, respectively. The results of our study are consistent with available, yet very limited, published data regarding the potential pathways of transmission of MERS-CoV at the animal-human interface. These results identify key knowledge gaps and highlight the need for more comprehensive, yet focused research to be conducted to better understand transmission between dromedaries and humans.published_or_final_versio

    Functional relationship of particulate matter (PM) emissions, animal species, and moisture content during manure application

    Get PDF
    Livestock manure is recycled to agricultural land as organic fertilizer. Due to the extensive usage of antibiotics in conventional animal farming, antibiotic-resistant bacteria are highly prevalent in feces and manure. The spread of wind-driven particulate matter (PM) with potentially associated harmful bacteria through manure application may pose a threat to environmental and human health. We studied whether PM was aerosolized during the application of solid and dried livestock manure and the functional relationship between PM release, manure dry matter content (DM), treatment and animal species. In parallel, manure and resulting PM were investigated for the survival of pathogenic and antibiotic-resistant bacterial species. The results showed that from manure with a higher DM smaller particles were generated and more PM was emitted. A positive correlation between manure DM and PM aerosolization rate was observed. There was a species-dependent critical dryness level (poultry: 60% DM, pig: 80% DM) where manure began to release PM into the environment. The maximum PM emission potentials were 1 and 3 kg t(-1) of applied poultry and pig manure, respectively. Dried manure and resulting PM contained strongly reduced amounts of investigated pathogenic and antibiotic-resistant microorganisms compared to fresh samples. An optimal manure DM regarding low PM emissions and reduced pathogen viability was defined from our results, which was 55-70% DM for poultry manure and 75-85% DM for pig manure. The novel findings of this study increase our detailed understanding and basic knowledge on manure PM emissions and enable optimization of manure management, aiming a manure DM that reduces PM emissions and pathogenic release into the environment
    • …
    corecore