65 research outputs found

    Conserved expression of vertebrate microvillar gene homologs in choanocytes of freshwater sponges

    Get PDF
    International audienceBackground: The microvillus is a versatile organelle that serves important functions in disparate animal cell types. However, from a molecular perspective, the microvillus has been well studied in only a few, predominantly vertebrate, contexts. Little is known about how differences in microvillar structure contribute to differences in function, and how these differences evolved. We sequenced the transcriptome of the freshwater sponge, Ephydatia muelleri, and examined the expression of vertebrate microvillar gene homologs in choanocytes—the only microvilli-bearing cell type present in sponges. Sponges offer a distant phylogenetic comparison with vertebrates, and choanocytes are central to discussions about early animal evolution due to their similarity with choanoflagellates, the single-celled sister line-age of modern animals. Results: We found that, from a genomic perspective, sponges have conserved homologs of most vertebrate microvillar genes, most of which are expressed in choanocytes, and many of which exhibit choanocyte-specific or choanocyte-enriched expression. Possible exceptions include the cadherins that form intermicrovillar links in the enterocyte brush border and hair cell stereocilia of vertebrates and cnidarians. No obvious orthologs of these proteins were detected in sponges, but at least four candidate cadherins were identified as choanocyte-enriched and might serve this function. In contrast to the evidence for conserved microvillar structure in sponges and vertebrates, we found that choanoflagellates and ctenophores lack homologs of many fundamental microvillar genes, suggesting that microvillar structure may diverge significantly in these lineages, warranting further study. Conclusions: The available evidence suggests that microvilli evolved early in the prehistory of modern animals and have been repurposed to serve myriad functions in different cellular contexts. Detailed understanding of the sequence by which different microvilli-bearing cell/tissue types diversified will require further study of microvillar composition and development in disparate cell types and lineages. Of particular interest are the microvilli of choano-flagellates, ctenophores, and sponges, which collectively bracket the earliest events in animal evolution

    The innate immune repertoire in Cnidaria - ancestral complexity and stochastic gene loss

    Get PDF
    Analysis of genomic resources available for cnidarians revealed that several key components of the vertebrate innate immune repertoire are present in representatives of the basal cnidarian class Anthozoa, but are missing in Hydra, a member of the class Hydrozoa, indicating ancient origins for many components of the innate immune system

    To Be or Not to Be a Flatworm: The Acoel Controversy

    Get PDF
    Since first described, acoels were considered members of the flatworms (Platyhelminthes). However, no clear synapomorphies among the three large flatworm taxa - the Catenulida, the Acoelomorpha and the Rhabditophora - have been characterized to date. Molecular phylogenies, on the other hand, commonly positioned acoels separate from other flatworms. Accordingly, our own multi-locus phylogenetic analysis using 43 genes and 23 animal species places the acoel flatworm Isodiametra pulchra at the base of all Bilateria, distant from other flatworms. By contrast, novel data on the distribution and proliferation of stem cells and the specific mode of epidermal replacement constitute a strong synapomorphy for the Acoela plus the major group of flatworms, the Rhabditophora. The expression of a piwi-like gene not only in gonadal, but also in adult somatic stem cells is another unique feature among bilaterians. These two independent stem-cell-related characters put the Acoela into the Platyhelminthes-Lophotrochozoa clade and account for the most parsimonious evolutionary explanation of epidermal cell renewal in the Bilateria. Most available multigene analyses produce conflicting results regarding the position of the acoels in the tree of life. Given these phylogenomic conflicts and the contradiction of developmental and morphological data with phylogenomic results, the monophyly of the phylum Platyhelminthes and the position of the Acoela remain unresolved. By these data, both the inclusion of Acoela within Platyhelminthes, and their separation from flatworms as basal bilaterians are well-supported alternatives

    The cellular and molecular bases of the sponge stem cell systems underlying reproduction, homeostasis and regeneration

    No full text
    The evolution of multicellular organisms is generally thought (and seems likely) to have been accompanied by the evolution of a stem cell system. Sponges, some of the early-evolved metazoans, have totipotent/pluripotent stem cells. Thus, uncovering the cellular and molecular bases of the sponge stem cells will not only be crucial for understanding the ancestral gene repertoire of animal stem cells, but will also give us clues to understanding the evolution of molecular mechanisms for maintaining multipotency (pluripotency) and differentiation ability during animal evolution. Sponges (Porifera) are a large phylum that includes an enormous number of species, whose cellular compositions and life cycles show striking variations. In the last decade, methodologies for molecular studies and sequencing resources have dramatically advanced and made it possible to clearly define stem cells in sponges in cellular and molecular terms. In this review, together with recent studies of sponges in various classes, the following issues will be discussed: i) recent findings that revealed that the previously proposed model that “archeocytes and choanocytes are the two types of stem cells” originally based on work in demosponges can be applied as a unified view of the stem cell system in sponges that have various cellular organizations, ii) the fact that sponge cells are more plastic than previously thought, as shown by recent studies of sponge regeneration both from dissociated cells and upon injury, and iii) the importance of transdifferentiation in sponge stem cell systems and regeneration

    Isolation of Ef silicatein and Ef lectin as molecular markers for sclerocytes and cells involved in innate immunity in the freshwater sponge Ephydatia fluviatilis

    Get PDF
    Sponges (phylum Porifera) have remarkable regenerative and reconstitutive abilities and represent evolutionarily the oldest metazoans. To investigate sponge stem cell differentiation, we have focused on the asexual reproductive system in the freshwater sponge Ephydatia fluviatilis. During germination, thousands of stem cells proliferate and differentiate to form a fully functional sponge. As an initial step of our investigation of stem cell (archeocyte) differentiation, we isolated molecular markers for two differentiated cell types: spicule-making sclerocyte cells, and cells involved in innate immunity. Sclerocyte lineage-specific Ef silicatein shares 45% to 62% identity with other sponge silicateins. As in situ hybridization of Ef silicatein specifically detects archeocytes possibly committed to sclerocytes, as well as sclerocytes with an immature or mature spicule, therefore covering all the developmental stages, we conclude that Ef silicatein is a suitable sclerocyte lineage marker. Ef lectin, a marker for the cell type involved in innate immunity, shares 59% to 65% identity with the marine sponge Suberites domuncula galactose-binding protein (Sd GBP) and horseshoe crab Tachypleus tridentatus tachylectin1/lectinL6. Since Scl GBP and tachylectin1 are known to bind to bacterial lipopolysaccharides and inhibit the growth of bacteria, Ef lectin may have a similar function and be expressed in a specialized type of cell involved in defense against invading bacteria. Ef lectin mRNA and protein are not expressed in early stages of development, but are detected in late stages. Therefore, Ef lectin may be specifically expressed in differentiating and/or differentiated cells. We suggest Ef lectin as a marker for cells that assume innate immunity in freshwater sponges

    A correlation of long term effects and radiation quality in the progeny of bystander cells after microbeam radiations: The experimental study of radiotherapy for cancer risk mitigation

    No full text
    The goal of this study is to investigate the role of radiation quality and gap junction intercellular communication (GJIC) in the propagation of delayed stressful effects in the progeny of bystander human skin fibroblasts cultures (NB1RGB). Briefly, confluent NB1RGB cells in the presence and absence of gap junction inhibitor (AGA) were exposed to ionizing radiation (IR) with a different linear energy transfer (LET) either 5.35 keV X rays (LET 6 keV/m) or 18.3 MeV/u carbon (LET 103 keV/m) microbeam radiations. Following 20 populations post-irradiation, the progeny of bystander NB1RGB cells were harvested and assayed for several of biological endpoints. Our results showed that expression of stressful effects in the progeny of bystander cells is dependent on LET. The progeny of bystander cells exposed to low-LET X rays showed the persistence of oxidative stress and it was correlated with the increased mutant fraction. Such effect were not observed after high-LET carbon ions. Interestingly, inhibition of GJIC mitigated the toxic effects in the progeny of bystander cells. Together, the results contribute to the understanding of the fundamental radiation biology relating to the high-LET carbon ions to mitigate cancer risk after radiotherapy. Furthermore, GJIC be considered as a critical mediator in the bystander mutagenic effect
    corecore