3,957 research outputs found

    Penetrative nature of high energy showers observed in Chacaltaya emulsion chamber

    Get PDF
    About 30% of single core showers with E (sup gamma) 10 TeV have stronger penetrating power than that expected from electromagnetic showers (e,gamma). On the other hand, their starting points of cascades in the chamber are found to be as shallow as those of (e,gamma) components. It is suggested that those showers are very collimated bundles of hadron and (e,gamma) component. Otherwise, it is assumed that the collision mean free path of those showers in the chamber is shorter than that of hadron with geometrical value

    Effects of virus infection on photosynthesis, growth, and population dynamics of Eupatorium makinoi

    Get PDF
    Thesis (Ph. D. in Science)--University of Tsukuba, (A), no. 1791, 1998.3.2

    Near-Infrared Coronagraphic Observations of the T Tauri Binary System UY Aur

    Get PDF
    We present a near-infrared image of UY Aur, a 0.9" separated binary system, using the Coronagraphic Imager with Adaptive Optics on the Subaru Telescope. Thanks to adaptive optics, the spatial resolution of our image was ~0.1" in the full width at half maximum of the point spread function, the highest achieved. By comparison with previous measurements, we estimated that the orbital period is ~1640 yrs and the total mass of the binary is ~1.73 solar mass. The observed H-band magnitude of the secondary varies by as much as 1.3 mag within a decade, while that of the primary is rather stable. This inconstancy may arise from photospheric variability caused by an uneven accretion rate or from the rotation of the secondary. We detected a half-ring shaped circumbinary disk around the binary with a bright southwest part but a barely detectable northeast portion. The brightness ratio is ~57. Its inner radius and inclination are about 520 AU and 42, respectively. The disk is not uniform but has remarkable features, including a clumpy structure along the disk, circumstellar material inside the inner cavity, and an extended armlike structure. The circumstellar material inside the cavity probably corresponds to a clump or material accreting from the disk onto the binary. The armlike structure is a part of the disk, created by the accretion from the outer region of the disk or encounters with other stellar systems.Comment: 16 pages, 6 figures; accepted for publication in A

    Near-Infrared Imaging Survey of Faint Companions around Young Dwarfs in the Pleiades Cluster

    Get PDF
    We conducted a near-infrared imaging survey of 11 young dwarfs in the Pleiades cluster using the Subaru Telescope and the near-infrared coronagraph imager. We found 10 faint point sources, with magnitudes as faint as 20 mag in the K-band, around 7 dwarfs. Comparison with Spitzer archive images revealed that a pair of the faint sources around V 1171 Tau are very red in the infrared wavelengths, indicative of very low-mass young stellar objects. However, the results of our follow-up proper motion measurements implied that the central star and the faint sources do not share common proper motions, suggesting that they are not physically associated.Comment: 13 pages. Accepted for publication in Research in Astronomy and Astrophysic

    Conserved expression of vertebrate microvillar gene homologs in choanocytes of freshwater sponges

    Get PDF
    International audienceBackground: The microvillus is a versatile organelle that serves important functions in disparate animal cell types. However, from a molecular perspective, the microvillus has been well studied in only a few, predominantly vertebrate, contexts. Little is known about how differences in microvillar structure contribute to differences in function, and how these differences evolved. We sequenced the transcriptome of the freshwater sponge, Ephydatia muelleri, and examined the expression of vertebrate microvillar gene homologs in choanocytes—the only microvilli-bearing cell type present in sponges. Sponges offer a distant phylogenetic comparison with vertebrates, and choanocytes are central to discussions about early animal evolution due to their similarity with choanoflagellates, the single-celled sister line-age of modern animals. Results: We found that, from a genomic perspective, sponges have conserved homologs of most vertebrate microvillar genes, most of which are expressed in choanocytes, and many of which exhibit choanocyte-specific or choanocyte-enriched expression. Possible exceptions include the cadherins that form intermicrovillar links in the enterocyte brush border and hair cell stereocilia of vertebrates and cnidarians. No obvious orthologs of these proteins were detected in sponges, but at least four candidate cadherins were identified as choanocyte-enriched and might serve this function. In contrast to the evidence for conserved microvillar structure in sponges and vertebrates, we found that choanoflagellates and ctenophores lack homologs of many fundamental microvillar genes, suggesting that microvillar structure may diverge significantly in these lineages, warranting further study. Conclusions: The available evidence suggests that microvilli evolved early in the prehistory of modern animals and have been repurposed to serve myriad functions in different cellular contexts. Detailed understanding of the sequence by which different microvilli-bearing cell/tissue types diversified will require further study of microvillar composition and development in disparate cell types and lineages. Of particular interest are the microvilli of choano-flagellates, ctenophores, and sponges, which collectively bracket the earliest events in animal evolution

    Photodynamic Therapy with Indocyanine Green Injection and Near-Infrared Light Irradiation Has Phototoxic Effects and Delays Paralysis in Spinal Metastasis

    Get PDF
    Objective: The purpose of this study was to investigate the phototoxic effects of photodynamic therapy (PDT) with indocyanine green (ICG) and near-infrared light irradiation on rat mammary adenocarcinoma cells, and its therapeutic efficacy in a rat model of spinal metastasis. Background data: Although PDT has been successfully used as a non-radiation treatment for many malignancies, it has not yet been clinically applied for treating spinal metastasis. Methods: For the phototoxicity study, CRL-1666 cells were treated with PDT and cell viability was measured by WST-1 assay. For the efficacy study, 26 female Fischer 344 rats with spinal metastasis in the L6 vertebra were divided into three treatment groups: PDT with local injection of ICG (9 rats), PDT with systemic injection of ICG (10 rats), and no treatment or control (7 rats). Both the PDT groups received near-infrared light irradiation with a total energy of 10 J (1 W for 10 sec). The light was delivered directly through a single silica probe which was set on the left side of the L6 vertebral body. Hindlimb motor function was monitored according to the Basso-Beattie-Bresnahan (BBB) scale. Further, the observation periods were calculated to determine the survival time. Results: The PDT exerted immediate and persistent phototoxic effects. Furthermore, the PDT with local injection of ICG as well as systemic injection of ICG delayed the deterioration of paralysis and prolonged the observation period. Conclusions: PDT with ICG injection and near-infrared light irradiation could be an effective local adjuvant treatment for spinal metastasis
    corecore