49 research outputs found

    The effectiveness of the DIC as a measurement system in SRG shear strengthened reinforced concrete beams

    Get PDF
    Steel Reinforced Grout (SRG) materials are generating considerable interest as strengthening system of reinforced concrete (RC) structures. They are finding increasing use in several civil engineering applications mainly due to the advantages they offer over traditional material such as high strength to weight ratio, ease of application, durability and low price. This paper describes the results of an experimental investigation carried out on SRG shear strengthened RC beams and gives evidence of the Digital Image Correlation (DIC) effectiveness as a measurement system. The tests performed had two main objectives: (i) assess the effectiveness of continuous and discontinuous U-wrapped jackets comprising a different number of layers and strips; (ii) assess the shear crack distribution during the tests by means of the DIC measurements. The results confirmed that reinforcing RC beams with SRG jackets can increase the load-bearing capacity; when the beam was reinforced with a continuous two-layered SRG strip, an increase of 84% was observed (compared to the unreinforced beam). The Linear Variable Differential Transformers (LVDT) measurements validated the results obtained by means of the DIC

    A moving interface finite element formulation to predict dynamic edge debonding in FRP-strengthened concrete beams in service conditions

    Get PDF
    A new methodology to predict interfacial debonding phenomena in fibre-reinforced polymer (FRP) concrete beams in the serviceability load condition is proposed. The numerical model, formulated in a bi-dimensional context, incorporates moving mesh modelling of cohesive interfaces in order to simulate crack initiation and propagation between concrete and FRP strengthening. Interface elements are used to predict debonding mechanisms. The concrete beams, as well as the FRP strengthening, follow a one-dimensional model based on Timoshenko beam kinematics theory, whereas the adhesive layer is simulated by using a 2D plane stress formulation. The implementation, which is developed in the framework of a finite element (FE) formulation, as well as the solution scheme and a numerical case study are presented

    A coupled ALE-Cohesive formulation for interfacial debonding propagation in sandwich structures

    Get PDF
    Abstract A numerical model to predict debonding phenomena in sandwich structures based on soft core and high performance external skins is proposed. In particular, the proposed model incorporates shear deformable beams to simulate the face sheet and a 2D elastic domain to model the core of the structure. Debonding processes is simulated by means a moving interface elements, introduced between the core and the face. The numerical interface strategy is consistent to a moving mesh technique based on Arbitrary Lagrangian–Eulerian (ALE), in which weak based moving connections are implemented by using the FE formulation. The moving mesh technique combined with a multilayer formulation ensures a reduction of the computational costs required to predict crack onset and subsequent evolution of the debonding phenomena. The accuracy of the proposed approach is verified by means comparisons with experimental and numerical results. Moreover, simulations in dynamic framework are developed to identify the influence of inertial effects produced by different typologies of core on debonding phenomena. The investigation revels the impact of mechanical properties of core on the dynamic debonding mechanisms

    A mason-inspired pattern generator for historic masonry structures using quality indexes

    Get PDF
    A considerable amount of historic masonry structures (HMS) are composed of irregular stone. However, few studies have systematically investigated the influence of masonry patterns (or masonry unit arrangements) on structural behaviour. The main difficulty stems from the pattern acquisition and the definition of adequate parameters that correlate the pattern with the structural behaviour. To this aim, this paper presents a stochastic 2D coursed-rectangular masonry pattern generator that incorporates geometric quality indexes (QI) to generate patterns with consistent masonry quality and structural behaviour. The generator’s input parameters separately consider the available stone units and the "virtual mason"’s skill level to cover the range of possible pattern qualities. Finally, micro limit analysis simulations show how deviation from the "rules of art" reduces strength capacity by up to 30%. Furthermore, it has been discussed how masonry patterns generated with selected QI-s show consistent structural behaviour, e.g. reducing the coefficient of variation of the strength capacities by 15%.This work was partly financed by FCT/MCTES through national funds (PIDDAC) under the R&D Unit ISISE under reference UIDB/04029/2020, and under the Associate Laboratory Advanced Production and Intelligent Systems ARISE under reference LA/P/0112/2020. This study has been partly funded by the STAND4HERITAGE project that has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant agreement No. 833123), as an Advanced Grant. This work is also partly financed by MPP2030-FCT PhD Grants under the R&D Unit Institute for Sustainability and Innovation in Structural Engineering (ISISE), under reference PRT/BD/154348/2022

    On the use of the digital twin concept for the structural integrity protection of architectural heritage

    Get PDF
    Undoubtedly, heritage buildings serve as essential embodiments of the cultural richness and diversity of the world’s states, and their conservation is of the utmost importance. Specifically, the protection of the structural integrity of these buildings is highly relevant not only because of the buildings themselves but also because they often contain precious artworks, such as sculptures, paintings, and frescoes. When a disaster causes damage to heritage buildings, these artworks will likely be damaged, resulting in the loss of historical and artistic materials and an intangible loss of memory and identity for people. To preserve heritage buildings, state-of-the-art recommendations inspired by the Venice Charter of 1964 suggest real-time monitoring of the progressive damage of existing structures, avoiding massive interventions, and providing immediate action in the case of a disaster. The most up-to-date digital information and analysis technologies, such as digital twins, can be employed to fulfil this approach. The implementation of the digital twin paradigm can be crucial in developing a preventive approach for built cultural heritage conservation, considering its key features of continuous data exchange with the physical system and predictive analysis. This paper presents a comprehensive overview of the digital twin concept in the architecture, engineering, construction, and operation (AECO) domain. It also critically discusses some applications within the context of preserving the structural integrity of architectural heritage, with a particular emphasis on masonry structures. Finally, a prototype of the digital twin paradigm for the preservation of heritage buildings’ structural integrity is proposed.This research was supported by the doctoral grant PRT/BD/152822/2021 financed by the Portuguese Foundation for Science and Technology (FCT), under the MIT Portugal Program

    a numerical model based on ale formulation to predict fast crack growth in composite structures

    Get PDF
    Abstract A novel numerical strategy to predict dynamic crack propagation phenomena in 2D continuum media is proposed. The numerical method is able to simulate the behavior of materials and structures affected by dynamic crack growth mechanisms. In particular, an efficient computational procedure based on the combination of Fracture Mechanics concepts and Arbitrary Lagrangian and Eulerian approach (ALE) has been developed. This represents a generalization of previous authors' works in a dynamic framework with the purpose to propose a unified approach to predict crack propagation using dynamic or static fracture mechanics and a moving mesh methodology. The crack speed is explicitly evaluated at each time step by using a proper crack tip speed criterion, which can be expressed as function of energy release rate or stress intensity factor. In order to validate the formulation, experimental and numerical results available from the literature are considered. In addition, a parametric study to verify the prediction of proposed modeling in terms of mesh dependence phenomena, computational efficiency and numerical complexity is developed

    A numerical model based on ALE formulation to predict crack propagation in sandwich structures

    Get PDF
    A numerical model to predict crack propagation phenomena in sandwich structures is proposed. The model incorporates shear deformable beams to simulate high performance external skins and a 2D elastic domain to model the internal core. Crack propagation is predicted in both core and external skin-to-core interfaces by means of a numerical strategy based on an Arbitrary Lagrangian�Eulerian (ALE) formulation. Debonding phenomena are simulated by weak based connections, in which moving interfacial elements with damage constitutive laws are able to reproduce the crack evolution. Crack growth in the core is analyzed through a moving mesh approach, where a proper fracture criterion and mesh refitting procedure are introduced to predict crack tip front direction and displacement. The moving mesh technique, combined with a multilayer formulation, ensures a significant reduction of the computational costs. The accuracy of the proposed approach is verified through comparisons with experimental and numerical results. Simulations in a dynamic framework are developed to identify the influence of inertial effects on debonding phenomena arising when different core typologies are employed. Crack propagation in the core of sandwich structures is also analyzed on the basis of fracture parameters experimentally determined on commercially available foam

    A tool for the rapid seismic assessment of historic masonry structures based on limit analysis optimisation and rocking dynamics

    Get PDF
    This paper presents a user-friendly, CAD-interfaced methodology for the rapid seismic assessment of historic masonry structures. The proposed multi-level procedure consists of a two-step analysis that combines upper bound limit analysis with non-linear dynamic (rocking) analysis to solve for seismic collapse in a computationally-efficient manner. In the first step, the failure mechanisms are defined by means of parameterization of the failure surfaces. Hence, the upper bound limit theorem of the limit analysis, coupled with a heuristic solver, is subsequently adopted to search for the load multiplier’s minimum value and the macro-block geometry. In the second step, the kinematic constants defining the rocking equation of motion are automatically computed for the refined macro-block model, which can be solved for representative time-histories. The proposed methodology has been entirely integrated in the user-friendly visual programming environment offered by Rhinoceros3D + Grasshopper, allowing it to be used by students, researchers and practicing structural engineers. Unlike time-consuming advanced methods of analysis, the proposed method allows users to perform a seismic assessment of masonry buildings in a rapid and computationally-efficient manner. Such an approach is particularly useful for territorial scale vulnerability analysis (e.g., for risk assessment and mitigation historic city centres) or as post-seismic event response (when the safety and stability of a large number of buildings need to be assessed with limited resources). The capabilities of the tool are demonstrated by comparing its predictions with those arising from the literature as well as from code-based assessment methods for three case studies.This work was partly funded by project STAND4HERITAGE that has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 833123), as an Advanced Grant

    Lateral capacity of URM walls: a parametric study using macro and micro limit analysis predictions

    Get PDF
    This research investigates the texture influence of masonry walls’ lateral capacity by comparing analytical predictions performed via macro and micro limit analysis. In particular, the effect of regular and quasi-periodic bond types, namely Running, Flemish, and English, is investigated. A full factorial dataset involving 81 combinations is generated by varying geometrical (panel and block aspect ratio, bond type) and mechanical (friction coefficient) parameters. Analysis of variance (ANOVA) approach is used to investigate one-way and two-way factor interactions for each parameter in order to assess how it affects the horizontal load multiplier. Macro and micro limit analysis predictions are compared, and the differences in terms of mass-proportional horizontal load multiplier and failure mechanism are critically discussed. Macro and micro limit analysis provide close results, demonstrating the reliability of such approaches. Furthermore, results underline how the panel and block aspect ratio had the most significant effect on both the mean values and scatter of results, while no significant effect could be attributed to the bond types.This work was partly financed by FCT/MCTES through national funds (PIDDAC) under the R&D Unit ISISE under reference UIDB/04029/2020. This study has been partly funded by the STAND4HERITAGE project that has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant agreement No. 833123), as an Advanced Grant

    Artificial neural networks to predict the mechanical properties of natural fibre-reinforced Compressed Earth Blocks (CEBs)

    Get PDF
    The purpose of this study is to explore Artificial Neural Networks (ANNs) to predict the compressive and tensile strengths of natural fibre-reinforced Compressed Earth Blocks (CEBs). To this end, a database was created by collecting data from the available literature. Data relating to 332 specimens (Database 1) were used for the prediction of the compressive strength (ANN1), and, due to the lack of some information, those relating to 130 specimens (Database 2) were used for the prediction of the tensile strength (ANN2). The developed tools showed high accuracy, i.e., correlation coefficients (R-value) equal to 0.97 for ANN1 and 0.91 for ANN2. Such promising results prompt their applicability for the design and orientation of experimental campaigns and support numerical investigations.This work was funded by the FCT (Foundation for Science and Technology), under grant agreement UIBD/150874/2021 attributed to the first author. This work was also partly financed by Fundação “La Caixa”, under the reference PV20-00072, and FCT/MCTES through national funds (PIDDAC) under the R&D Unit Institute for Sustainability and Innovation in Structural Engineering (ISISE), under reference UIDB/04029/2020
    corecore