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Abstract: This research investigates the texture influence of masonry walls’ lateral capacity by
comparing analytical predictions performed via macro and micro limit analysis. In particular,
the effect of regular and quasi-periodic bond types, namely Running, Flemish, and English, is
investigated. A full factorial dataset involving 81 combinations is generated by varying geometrical
(panel and block aspect ratio, bond type) and mechanical (friction coefficient) parameters. Analysis
of variance (ANOVA) approach is used to investigate one-way and two-way factor interactions for
each parameter in order to assess how it affects the horizontal load multiplier. Macro and micro limit
analysis predictions are compared, and the differences in terms of mass-proportional horizontal load
multiplier and failure mechanism are critically discussed. Macro and micro limit analysis provide
close results, demonstrating the reliability of such approaches. Furthermore, results underline how
the panel and block aspect ratio had the most significant effect on both the mean values and scatter of
results, while no significant effect could be attributed to the bond types.

Keywords: bond patterns; limit analysis; parameter influence; in-plane masonry wall

1. Introduction

Across the centuries, depending on the available materials, facilities, and skills of
the workers, a great variety of different masonry typologies have been used to build
structures. In Europe, bricks or stones were usually adopted to generate various assem-
blages, varying in terms of bond pattern, number of leaves, etc. Referring to brickworks,
although a large variety of different-sized bricks were manufactured in the past, typi-
cally, they were rectangular, same-size, and arranged in periodic or quasi-periodic bond
patterns [1–5]. To fully understand the influence of different bond patterns, comprehen-
sive sensitivity analyses using advanced numerical or analytical strategies are required.
The usage of one computational strategy rather than another is driven by the type of
analysis, data quality, time availability, investigated phenomenon, etc. The taxonomies
proposed in [6–8] identified four main approaches for the numerical modelling of masonry
structures: (i) block-based models, (ii) continuum models, (iii) macroelement models, and
(iv) geometry-based models.

Block-based models can account for the actual masonry texture since masonry is
modelled following the unit-by-unit representation. Block-based approaches consider rigid
or deformable blocks interacting according to a frictional or cohesive-frictional contact
modelling [9–13]. Three main strategies can be grouped within this sub-class: (i) distinct
element method (DEM) [14–20], which was introduced by Cundall [21], (ii) discontinuous
deformation analysis (DDA), which takes into account the deformability of blocks and
fulfils the assumption of no tension between blocks and no penetration of one block into
another, (iii) non-smooth contact dynamics (NSCD) method [22–29], characterised by a
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direct contact formulation in its non-smooth form, implicit integrations schemes, and
energy dissipation due to blocks impact.

Continuum models consider masonry as a deformable continuous medium. It requires
less computational effort compared with the discontinous approaches because the mesh
discretisation does not have to describe the actual block-by-block discretisation [30–35]. The
most relevant issue in this approach is related to the mechanical modelling of the material
properties, which may be performed with: (i) direct approaches, (ii) homogenisation
procedures. Several authors proposed homogenisation procedures for quasi- or non-
periodic masonry patterns in this context [36,37]. In some cases, authors coupled the
procedure with a series of limit analyses to determine the limit load and failure mechanism
for the homogenised model and to compare these results to the ones obtained with the
heterogeneous model [38].

In macroelement models, the structure is idealised into rigid or deformable panel-scale
structural components. In this case, the structure needs to be idealised a priori into piers
and spandrels, and this could lead to the definition of a mechanical system that does
not well represent the actual one, especially in the presence of very irregular opening
layouts [39,40].

As an alternative to sophisticated numerical approaches, geometry-based models
assume the structure’s geometry as the only input, in addition to the loading condition.
The structure is modelled as a rigid body whose structural performance is assessed through
limit-analysis theorems, i.e., static or kinematic. Static theorem-based computational
approaches can provide very useful outcomes for the investigation of the equilibrium
states in masonry vaulted structures and also appear especially suitable for predicting the
collapse mechanism (and the collapse multiplier) in complex masonry structures [41–45].
Kinematic theorem-based limit analysis (LA) approaches have recently been widely used
to assess existing masonry buildings [46].

In this context Rios et al. [47] investigated the effects of different geometrical (panel
ratio, block ratio, and bond type) and mechanical (friction coefficient) parameters on the
in-plane structural response of dry-stack masonry panels. The analytical simulation was
performed using a kinematic upper bound micro LA model with an associative flow rule.
The work demonstrates a negligible effect of the bond types. Malomo et al. [16] conducted
parametric DEM analyses on masonry walls with different bond patterns (Flemish, English,
Dutch cross-bond, Header, and Running bonds). The authors remarked how the walls’
initial stiffness and lateral capacity increased with the level of pre-compression and the
decrease of wall aspect ratio. They also observed that the bond types significantly affected
the results at high block aspect ratios.

However, few researchers investigated the influence of such geometrical and mechan-
ical parameters by using more than one computational approach. In particular, studies
comparing micro and macro strategies and assessing their pros and cons remain scarce.
For example, Casapulla et al. [48,49] parametrically compared micro and macro LA for-
mulations for IP and OOP failure mechanisms made with regular patterns by varying
geometrical (panel aspect ratio, block aspect ratio), mechanical (friction coefficient) and
overload levels.

This study performs a parametric analysis involving 81 combinations by varying
geometrical (panel aspect ratio, block aspect ratio, bond type) and mechanical (friction
coefficient) parameters. The ANOVA approach is used to investigate one-way and two-way
factor interactions and assess how each parameter affects the horizontal load multiplier.
Macro and micro limit analyses are compared, and the differences in terms of lateral
load-carrying capacity and failure mechanism are critically discussed.

The manuscript’s structure is designed as follows: Section 2 describes macro and micro
LA formulations. The design of the parametric analysis is reported in Section 3. Section 4
discusses the simulations’ outcomes. Finally, relevant conclusions are drawn in Section 5.
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2. Limit Analysis Formulation

In this section, macro and micro LA formulations are briefly described. Macro LA
is formulated according to the model proposed in [50], where the frictional resistance
definition proposed in [51] for non-periodic masonry is generalised for quasi-periodic bond
types. Micro LA formulation is formulated according to the pioneering work developed
in [52]. Both approaches are implemented in a customised code in the Java programming
language.

2.1. Macro LA Formulation

Several authors have used macro-block LA formulations to assess the structural
behaviour of unreinforced masonry structures [50,53–55]. Typically, the failure mechanism
is pre-defined (Figure 1), and the equilibrium equation is formulated using the virtual work
principle, where the horizontal load multiplier is the only unknown variable. Regarding
the in-plane sliding-rocking mechanism, the internal work is derived from the frictional
resistance at the contact interfaces, whereas the external virtual work involves both the
overturning and the stabilising works performed by the inertial forces:

δWext = λ ·WOBC · δO,OBC −WOBC · δS,OBC

δWint = Freal · δS, f
(1)

where WOBC is the inertial force arising from the self-weight of the macro-block OBC,
δO,OBC and δS,OBC are the virtual overturning and stabilising displacements of the centre
of gravity of the macro-block, and Freal is the frictional resistance generated by the wall.
It is worth highlighting that the failure often includes mix- sliding-rocking failure mode,
which might cause uplifting of the units and subsequent reduction of the contact surfaces.
In order to consider this phenomenon, the solution proposed in Casapulla et al. [50] is
adopted, where the frictional force is defined as a function of the crack inclination angle αc.
This is given by:

Freal = WOAB · µ ·
(

1− αc

αb

)
=

(
H − Zo

)2

2
· tan(αb) · tw · γ · µ ·

(
1− αc

αb

)
(2)

where tw is the thickness of the in-plane wall, µ is the friction coefficient, γ is the specific
weight of the masonry, αc is the actual crack inclination, and αb is the crack inclination
upper threshold, which in the case of Running bond type is the function of the block aspect
ratio:

tan(αb) =
v
h

(3)

Here, v and h are half-width and height of the units, respectively.
Since Equation (3) may only be adopted for Running patterns, an alternative solution

to define αb for different quasi-periodic bond types is introduced next (Figure 1).
As proposed in [51], in order to compute the crack inclination upper thresholds, one

can refer to a representative masonry pattern window (RMPW) and calculate αb according
to (Figure 1):

tan(αb) =

nc
∑

i=1
vi

(nc + 1) · h (4)

It is worth remarking that, in this case, nc refers to the number of courses inside the
RMPW, and νi is the i-th horizontal segments of the structured path UP-RIGHT-UP-RIGHT.

According to the analytical formulation proposed in [50], once the crack inclination
upper threshold is defined, it is possible to apply the macro-block formulation, which
allows the computation of the horizontal load multiplier and the geometry of the failure
mechanism. In particular, the horizontal load multiplier can be obtained by equating
the external and internal virtual works and solving for the load multiplier λ. Hence,
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the horizontal load multiplier can be computed through the solution of a constrained
minimisation problem where geometrical parameters characterising the failure mechanism,
i.e., αc and ZO, are adopted as variables:

minimise : λ

subject to : ZO ≤ H
αc ≤ αb

(5)

where ZO is the height position of the pivot point and H is the total height of the wall.
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2.2. Micro LA Formulation

In the micro LA formulation, the dry-stack assemblage is represented by rigid blocks
connected by frictional contact interfaces with a non-associative flow rule, with zero dilation
(Figure 2).
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The solution scheme proposed in [52], involving a non-associative frictional flow
rule consisting of sequential solutions of linear programs, is adopted (Figure 2b). At each
iteration a static LA problem is defined in the form of a linear program (LP) as:

Maximize λ
Subject to Bq− λfL = fD

CT [q− c] ≤ 0
(6)

where λ is the load multiplier and q the vector of unknown contact forces, fL and fD are
the live and dead loads, c is the cohesion vector, B and C are the equilibrium and yield
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constraint matrices. The first constraint represents the equilibrium of forces, whereas the
second is the condition for yielding (failure) of the contact interfaces.

The yield conditions are updated at each iteration based on the normal forces at the
previous iterations:

si,j ≤ ci + α · µi · ni,j

ci,j+1 = c0
i + (1 + α) ·

(
β · ni,j + (1− β) · ni,j−1

)
· tan(ϕi)

(7)

Here, si,j and ni,j are the shear and normal forces of the i-th interface at the j-th iteration.
α and β are algorithm parameters set to 0.01 and 0.6, respectively.

Finally, the steps of the iterative algorithm are the following [52]:

1. Set up the micro LA problem, according to Equation (6) with associative-frictional
yield condition.

2. Solve the LP and save the load multiplier λ0 and the normal forces at each interface
n0.

3. Modify the shear failure condition based on the previous iteration, according to
Equation (7).

4. Solve the LP with the modified yield conditions in Step 3 and save the load multiplier
λj and normal contact forces nj.

5. If the exit condition
(
|λj−λj−1|

λj
≤ tolerance

)
is true, the algorithm terminates. Else,

repeat from Step 3.
6. Calculate the kinematic variables (displacement rates) from the dual linear program.

The algorithm has been implemented in a custom computer code in the JAVA pro-
gramming language, and the interior point LP solver of the MOSEK optimisation software
(https://www.mosek.com/ (accessed on 28 January 2021)) has been used for the subse-
quent numerical studies.

3. Parametric Analysis Design

As stated before, this work aims to understand the in-plane lateral capacity of single
leaf masonry walls arranged with different bond types, namely Running, Flemish, and
English, and subjected to horizontal mass proportional loading. According to [47], a full
factorial dataset involving all 81 combinations of the input parameters is generated by
varying geometrical (panel aspect ratio, block aspect ratio, bond type) and mechanical
parameters (friction coefficient). One can note that the geometrical parameters are assumed
to be consistent with [47], whereas more reasonable values of the frictional parameters
have been assumed. Table 1 summarises the range of values adopted for each parameter.

Table 1. Parametric analysis design: parameters’ values.

Panel Aspect Ratio (H/B) [0.72/1.44; 1.44/1.44; 2.88/1.44]

Block Aspect Ratio (b/h) [0.24/0.06; 0.12/0.06; 0.06/0.06]

Bond Type [Running; Flemish; English]
Friction [0.50; 0.65; 0.80]

The 81 simulations have been performed with both micro and macro LA formulations,
and the resulting horizontal load multipliers and failure mechanism have been stored
within a database. The effect of input parameters on the results and the relation of the two
approaches have been investigated with the ANOVA approach [47], where the average

https://www.mosek.com/
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effect and its standard deviation are calculated for one (linear factor) or the joint effect of
two or more parameters (two- or multiple-way factor) as:

λi. . . =
b
∑

j=1

c
∑

k=1

d
∑

l=1
λijkl sλi. . .

=

√
1
n ·

b
∑

j=1

c
∑

k=1

d
∑

l=1

(
λijkl − λi. . .

)2

λij. . =
c
∑

k=1

d
∑

l=1
λijkl sλij. .

=

√
1
n ·

c
∑

k=1

d
∑

l=1

(
λijkl − λij. .

)2
(8)

where λi. . . is the mean value of the load multiplier for all the cases, with the first input
parameter having the value of i. λij. . is the mean value, where the first two input parameters
have the values of i and j, respectively.

4. Results

Figure 3 shows parameters’ individual effects for both micro and macro LA models.
The two formulations show good agreement in terms of both mean and standard deviation
values.
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Figure 3 remarks small differences in terms of horizontal load multiplier for the
analysed bond patterns. As expected, the higher friction coefficient tends to increase the
horizontal capacity of the in-plane walls but generates more scattered results. Panel aspect
ratio (PR = H/B) and the block aspect ratio (BR = b/h) strongly influence the horizontal
load multiplier. In both cases, the standard deviation is very sensitive to PR and BR. In
particular, higher PR tends to reduce lateral capacity scattering, whereas a higher BR has
the opposite effect since it tends to increase the noise in the prediction of both micro and
macro LA formulations.

The macro and micro LA two-way factor interactions are reported in Figures 4 and 5,
respectively. Results are organised into a 4 × 4 matrix that is symmetric if one considers
the data included in each cell, even though they are plotted by flipping the legends with
the horizontal axis to provide broader information to the reader.

It is worth underlining the good agreement between macro and micro LA formulations
is again confirmed. In macro LA, αb was set equal for Running and English bonds, so
the corresponding mean and standard deviation values are the same. Conversely, the
Flemish bond type is computed differently according to the graphical approach represented
in Figure 1. Assuming micro LA results as more accurate, the overestimation of lateral
capacity for Flemish bond type is generated by an inaccurate evaluation of αb. In fact,
micro LA underlines slight differences among the bond types that could not be caught
with macro LA. Referring to Figure 4, in macro LA simulations, the effect of the bond
patterns tends to decrease by increasing PR and BR, whereas standard deviation values
tend to decrease with higher values of PR and increase with higher values of BR, but stays
constant with the change in friction coefficient. Micro LA shows a different influence of the
bond types (Figure 5), where the two-way interaction with BR, PR, and friction coefficient
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does not provide remarkable differences, highlighting a relatively low influence of the
bond type in predicting the lateral capacity of in-plane masonry walls. Referring to the
second row of the matrices of both macro and micro LA formulations (Figures 4 and 5), it is
worth underlining that the bond type does not produce significant differences in terms of
load multiplier predictions, whereas the two-way factors PR-BR and PR-friction coefficient
produce remarkable differences, the latter yielding very scattered results.
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The third row of the matrices shows a good agreement (Figures 4 and 5). In particular,
one can note how by increasing BR the prediction tends to be more scattered except in the
case of a very slender wall, i.e., PR = 2, or very limited friction coefficient (e.g., µ = 0.5).
Furthermore, analysing the data reported in the third row, one can note that the higher BR
generates more friction resistance and produces an increment in terms of lateral capacity.
The fourth row of the matrixes represents the two-way factor interactions with the friction
coefficient. Overall, the friction coefficient has a much lower influence in terms of mean
values; however, the high variation in the results underlines the importance of such a
mechanical parameter for assessing the lateral capacity of dry-stack masonry walls.

Finally, to conclude the comparisons between the two computational procedures, one
should note how macro LA result’s trend of varying the friction coefficient is not influenced
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by the value of PR, meaning the two parameters are not correlated. On the contrary, micro
LA visualises an evident two-way friction-PR interaction. The friction-BR interaction shows
excellent agreement between macro and micro LA models, where the mean values tend to
increase with BR.

Micro LA failure mechanisms are collected into nine tables and reported in Appen-
dices A–I, whereas a comprehensive summary of the parametric analysis performed is
reported in Appendix J.

5. Conclusions

This research presents a comprehensive parametric analysis to assess the in-plane
behaviour and capacity of unreinforced dry-joint masonry walls by varying geometrical
(panel aspect ratio, block aspect ratio, bond type) and mechanical (friction coefficient)
properties. Simulations were performed using two computational approaches based on
micro and macro LA, respectively. The lateral capacity of the walls is represented by the
mass-proportional horizontal load multiplier, i.e., the ratio of horizontal and vertical force
on the masonry units. Subsequently, the load multipliers were examined via the ANOVA
approach.

The following points summarise the main findings and contributions of the paper:

• The panel and block aspect ratios significantly affect the horizontal load multipliers,
while the friction coefficient has less influence on the results.

• Significant variation in the results is noted for high friction coefficient values (e.g., 0.8),
suggesting a careful selection of this parameter in LA.

• Running and quasi-periodic bond patterns only slightly influence the load multiplier
prediction.

• Generally, a good agreement between macro and micro LA is observed in one- and
two-way factor interactions. Specifically, the most significant difference between the
two computational approaches (i.e., macro and micro LA) is obtained for the Flemish
bond pattern.

Future developments will involve: (i) increasing the dataset generation by considering
non-periodic masonry patterns, (ii) adoption of the proposed approach for the investigation
of more complex masonry prototypes rather than an in-plane wall, (iii) developing an
analytical equation based on mechanical assumptions or regression models.
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Appendix A

Table A1. Failure Mechanisms for Running Bond with µ = 0.5.
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Appendix B

Table A2. Failure Mechanisms for Running bond with µ = 0.65.

Block Aspect Ratio BR
1.0 2.0 4.0

Panel aspect
ratio PR

0.5
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Appendix C

Table A3. Failure Mechanisms for Running Bond with µ = 0.8.

Block Aspect Ratio BR
1.0 2.0 4.0

Panel aspect
ratio PR

0.5
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Appendix D

Table A4. Failure Mechanisms for Flemish Bond with µ = 0.50.

Block Aspect Ratio BR
1.0 2.0 4.0

Panel aspect
ratio PR

0.5
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Appendix E

Table A5. Failure Mechanisms for Flemish Bond with µ = 0.65.

Block Aspect Ratio BR
1.0 2.0 4.0

Panel aspect
ratio PR
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Appendix F

Table A6. Failure Mechanisms for Flemish Bond with µ = 0.80.

Block Aspect Ratio BR
1.0 2.0 4.0

Panel aspect
ratio PR

0.5

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 23 
 

Appendix F 

Table A6. Failure Mechanisms for Flemish Bond with μ = 0.80. 

 Block Aspect Ratio BR 
1.0 2.0 4.0 

Pa
ne

l a
sp

ec
t r

at
io

 P
R

 

0.5 

 

1.0 

2.0 

 
  

1.0

2.0



Appl. Sci. 2022, 12, 10834 16 of 22

Appendix G

Table A7. Failure Mechanisms for English Bond with µ = 0.50.

Block Aspect Ratio BR
1.0 2.0 4.0

Panel aspect
ratio PR
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Appendix H

Table A8. Failure Mechanisms for English Bond with µ = 0.65.

Block Aspect Ratio BR
1.0 2.0 4.0

Panel aspect
ratio PR
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Appendix I

Table A9. Failure Mechanisms for English Bond with µ = 0.80.

Block Aspect Ratio BR
1.0 2.0 4.0

Panel aspect
ratio PR
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Appendix J Comparison of Macro and Micro Load multiplier for All Dataset, with
Difference (%) = (l micro − l Macro)/ l Micro × 100

Table A10. Comparison of Macro and Micro Load multiplier for.

BOND PR BR Friction Coeff. l Micro l Macro Percentile Error
Running 0.5 4 0.50 0.50 0.64 27.88
Running 0.5 4 0.65 0.65 0.69 6.22
Running 0.5 4 0.80 0.80 0.73 8.62
Flemish 0.5 4 0.50 0.50 0.71 41.18
Flemish 0.5 4 0.65 0.65 0.77 18.27
Flemish 0.5 4 0.80 0.77 0.82 6.32
English 0.5 4 0.50 0.50 0.64 27.88
English 0.5 4 0.65 0.65 0.69 6.22
English 0.5 4 0.80 0.77 0.73 5.6

Running 0.5 2 0.50 0.47 0.43 8.71
Running 0.5 2 0.65 0.50 0.45 8.38
Running 0.5 2 0.80 0.51 0.47 8.09
Flemish 0.5 2 0.50 0.43 0.55 27.72
Flemish 0.5 2 0.65 0.49 0.59 20.99
Flemish 0.5 2 0.80 0.53 0.62 16.07
English 0.5 2 0.50 0.42 0.43 2.44
English 0.5 2 0.65 0.46 0.45 0.6
English 0.5 2 0.80 0.49 0.47 4.43

Running 0.5 1 0.50 0.27 0.25 6.18
Running 0.5 1 0.65 0.27 0.25 5.89
Running 0.5 1 0.80 0.27 0.25 5.98
Flemish 0.5 1 0.50 0.30 0.35 18.68
Flemish 0.5 1 0.65 0.31 0.37 18.25
Flemish 0.5 1 0.80 0.31 0.37 19.41
English 0.5 1 0.50 0.26 0.25 2.57
English 0.5 1 0.65 0.26 0.25 4.84
English 0.5 1 0.80 0.27 0.25 5.42

Running 1 4 0.50 0.50 0.51 2.03
Running 1 4 0.65 0.65 0.56 14.25
Running 1 4 0.80 0.72 0.60 16.6
Flemish 1 4 0.50 0.50 0.49 3.03
Flemish 1 4 0.65 0.61 0.54 12.63
Flemish 1 4 0.80 0.69 0.58 15.87
English 1 4 0.50 0.50 0.51 2.03
English 1 4 0.65 0.58 0.56 4.33
English 1 4 0.80 0.64 0.60 7.27

Running 1 2 0.50 0.40 0.43 8.03
Running 1 2 0.65 0.44 0.45 3.38
Running 1 2 0.80 0.48 0.47 1.05
Flemish 1 2 0.50 0.40 0.50 24.59
Flemish 1 2 0.65 0.47 0.54 15.6
Flemish 1 2 0.80 0.52 0.57 10.55
English 1 2 0.50 0.37 0.43 16.75
English 1 2 0.65 0.42 0.45 8.14
English 1 2 0.80 0.46 0.47 3.44

Running 1 1 0.50 0.26 0.25 3.35
Running 1 1 0.65 0.27 0.25 5.78
Running 1 1 0.80 0.26 0.25 2.34
Flemish 1 1 0.50 0.30 0.35 18.66
Flemish 1 1 0.65 0.31 0.36 16.83
Flemish 1 1 0.80 0.32 0.37 14.73
English 1 1 0.50 0.24 0.25 3.73
English 1 1 0.65 0.27 0.25 6.64
English 1 1 0.80 0.27 0.25 7.98
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Table A10. Cont.

BOND PR BR Friction Coeff. l Micro l Macro Percentile Error
Running 2 4 0.50 0.42 0.33 21.76
Running 2 4 0.65 0.42 0.37 14.03
Running 2 4 0.80 0.43 0.40 7.59
Flemish 2 4 0.50 0.41 0.29 29.48
Flemish 2 4 0.65 0.42 0.33 22.84
Flemish 2 4 0.80 0.43 0.36 17.19
English 2 4 0.50 0.40 0.33 17.8
English 2 4 0.65 0.41 0.37 11.2
English 2 4 0.80 0.42 0.40 6.21

Running 2 2 0.50 0.34 0.35 2.76
Running 2 2 0.65 0.36 0.36 1.55
Running 2 2 0.80 0.37 0.36 0.85
Flemish 2 2 0.50 0.35 0.35 0.21
Flemish 2 2 0.65 0.37 0.38 3.91
Flemish 2 2 0.80 0.38 0.40 5.77
English 2 2 0.50 0.33 0.35 6.17
English 2 2 0.65 0.35 0.36 4.31
English 2 2 0.80 0.36 0.36 0.41

Running 2 1 0.50 0.22 0.25 13.04
Running 2 1 0.65 0.26 0.25 3.94
Running 2 1 0.80 0.25 0.25 0.73
Flemish 2 1 0.50 0.28 0.33 15.73
Flemish 2 1 0.65 0.30 0.33 10.25
Flemish 2 1 0.80 0.31 0.33 5.83
English 2 1 0.50 0.23 0.25 6.63
English 2 1 0.65 0.26 0.25 2.41
English 2 1 0.80 0.26 0.25 2.68

References
1. Sharma, S.; Silva, L.C.; Graziotti, F.; Magenes, G.; Milani, G. Modelling the Experimental Seismic Out-of-Plane Two-Way Bending

Response of Unreinforced Periodic Masonry Panels Using a Non-Linear Discrete Homogenized Strategy. Eng. Struct. 2021, 242,
112524. [CrossRef]

2. Zhang, S.; Beyer, K. Numerical Investigation of the Role of Masonry Typology on Shear Strength. Eng. Struct. 2019, 192, 86–102.
[CrossRef]
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