129 research outputs found

    Oral processing of hydrogels: Influence of food material properties versus individuals' eating capability

    Get PDF
    Food material properties play an important role in sensory perception and consumer acceptance of foods. However, the actual oral processing behavior may depend on both the material properties of the food that is being consumed and individuals' oral capabilities. This study aimed to examine the relationships between intrinsic (oral capabilities of healthy participants) and extrinsic (food material properties of a set of hydrogels) variables to the real oral processing behavior. Three Îș‐carrageenan hydrogels (ÎșC), differing in fracture mechanics and oral tribology properties, were prepared: native ÎșC, ÎșC with added Na‐alginate, and a ÎșC matrix with added Ca‐alginate beads of 300 Όm. A composite score of eating capability (EC) was measured with non‐invasive techniques (maximum bite force and tongue pressure) using a panel of 28 untrained consumers. The oral processing behaviors (number of chews, oral residence time, and chewing rate) were analyzed with the same participants using frame‐by‐frame video analysis. It was found that the EC scores did not correlate with any of the oral processing behaviors. The number of chews and oral residence time showed a strong correlation with the fracture force and friction force at orally relevant speeds (10–100 mm/s), whereas chewing rate did not vary with these properties. The results from this study indicate that oral processing in healthy adults seems mainly motivated by food material properties, and the chewing rate seems to relate more to individual differences and EC than to food properties. Insights from this study, using model hydrogels, have helped to promote knowledge on oral processing behavior in healthy individuals; could bridge the gap between consumer science, psychology, and food science; and may be of interest to product developers in designing foods with pleasant texture properties

    Microdevices for extensional rheometry of low viscosity elastic liquids : a review

    Get PDF
    Extensional flows and the underlying stability/instability mechanisms are of extreme relevance to the efficient operation of inkjet printing, coating processes and drug delivery systems, as well as for the generation of micro droplets. The development of an extensional rheometer to characterize the extensional properties of low viscosity fluids has therefore stimulated great interest of researchers, particularly in the last decade. Microfluidics has proven to be an extraordinary working platform and different configurations of potential extensional microrheometers have been proposed. In this review, we present an overview of several successful designs, together with a critical assessment of their capabilities and limitations

    Gelation of cassia gum by freezing and thawing

    Get PDF
    Aqueous solution of cassia gum (CG), which is categorized as a galactomannan polysaccharide having mannose/galactose ratio = 5/1, forms hydrogels by freezing and thawing. When frozen CG aqueous solution was thawed, transparent sol was separated from a turbid gel, i.e. syneresis occurred. Gel concentration ({(Mass of dry gel) / (Mass of gel)} × 100) increased with increasing CG concentration. Viscoelastic properties of CG hydrogels formed by freezing and thawing were investigated by thermomechanical analysis (TMA) in water using an oscillation mode at 0.05 Hz. Dynamic modulus (Eâ€Č) increased from 3 kPa to ca. 5 kPa with increasing freezing rate. In contrast, Eâ€Č maintained a constant value regardless of repeating number of freezing and thawing. From TMA results, it is concluded that the density of cross-linking network structure depends on the size of ice formed by freezing. At the same time, the low Eâ€Č value of CG gels is ascribed to the fact that association of galactosyl side group is disturbed by the stiff chain attributed to the unsubstituted region of CG

    The Ubiquitin-Like Protein PLIC-1 or Ubiquilin 1 Inhibits TLR3-Trif Signaling

    Get PDF
    Background: The innate immune responses to virus infection are initiated by either Toll-like receptors (TLR3/7/8/9) or cytoplasmic double-stranded RNA (dsRNA)-recognizing RNA helicases RIG-I and MDA5. To avoid causing injury to the host, these signaling pathways must be switched off in time by negative regulators. Methodology/Principal Findings: Through yeast-two hybrid screening, we found that an ubiquitin-like protein named protein linking integrin-associated protein to cytoskeleton 1(PLIC-1 or Ubiquilin 1) interacted with the Toll/interleukin-1 receptor (TIR) domain of TLR4. Interestingly, PLIC-1 had modest effect on TLR4-mediated signaling, but strongly suppressed the transcriptional activation of IFN-ÎČ promoter through the TLR3-Trif-dependent pathway. Concomitantly, reduction of endogenous PLIC-1 by short-hairpin interfering RNA (shRNA) enhanced TLR3 activation both in luciferase reporter assays as well as in new castle disease virus (NDV) infected cells. An interaction between PLIC-1 and Trif was confirmed in co-immunoprecipitation (Co-IP) and GST-pull-down assays. Subsequent confocal microscopic analysis revealed that PLIC-1 and Trif colocalized with the autophagosome marker LC3 in punctate subcellular structures. Finally, overexpression of PLIC-1 decreased Trif protein abundance in a Nocodazole-sensitive manner. Conclusions: Our results suggest that PLIC-1 is a novel inhibitor of the TLR3-Trif antiviral pathway by reducing the abundance of Trif. © 2011 Biswas et al

    Expression of angiogenic factors predicts response to chemoradiotherapy and prognosis of oesophageal squamous cell carcinoma

    Get PDF
    The ability to predict patients' responses to chemoradiotherapy by analyzing pre-treatment biopsy specimens would be valuable for managing oesophageal squamous-cell cancer. To this end, the expression of p53, thymidine phosphorylase and vascular endothelial cell growth factor was analyzed by immunohistochemistry in 52 patients with oesophageal squamous-cell cancer prior to chemoradiotherapy. Treatment consisted of radiotherapy (40 Gy) and 5 day-infusion of 5-Fluorouracil (500 mg m−2 per day) combined with cisplatin (10 mg m−2 per day). Following treatment, imaging and endoscopic reassessment was performed to establish treatment response. Thirty-one patients underwent radical surgery and 21 patients were treated with an additional 20 Gy of radiotherapy. Of the tumours studied, 58% were p53-positive, 40% thymidine phosphorylase-positive and 44% vascular endothelial cell growth factor-positive. A clinical response was observed in 36 patients (69%) and was negatively associated with thymidine phosphorylase expression (P=0.02) and vascular endothelial cell growth factor expression (P<0.001). However, the 5-year survival rate was significantly lower only in patients with vascular endothelial cell growth factor-positive tumours (P=0.037). Multivariate analysis identified vascular endothelial cell growth factor as a significant independent prognostic factor (P=0.0147). These results suggest that expression of angiogenic factors has predictive value for the treatment response and outcome of patients with oesophageal cancer

    Regulation of Toll-like receptor signaling by NDP52-mediated selective autophagy is normally inactivated by A20

    Get PDF
    Toll-like receptor (TLR) signaling is linked to autophagy that facilitates elimination of intracellular pathogens. However, it is largely unknown whether autophagy controls TLR signaling. Here, we report that poly(I:C) stimulation induces selective autophagic degradation of the TLR adaptor molecule TRIF and the signaling molecule TRAF6, which is revealed by gene silencing of the ubiquitin-editing enzyme A20. This type of autophagy induced formation of autophagosomes and could be suppressed by an autophagy inhibitor and lysosomal inhibitors. However, this autophagy was not associated with canonical autophagic processes, including involvement of Beclin-1 and conversion of LC3-I to LC3-II. Through screening of TRIF-interacting ‘autophagy receptors’ in human cells, we identified that NDP52 mediated the selective autophagic degradation of TRIF and TRAF6 but not TRAF3. NDP52 was polyubiquitinated by TRAF6 and was involved in aggregation of TRAF6, which may result in the selective degradation. Intriguingly, only under the condition of A20 silencing, NDP52 could effectively suppress poly(I:C)-induced proinflammatory gene expression. Thus, this study clarifies a selective autophagic mechanism mediated by NDP52 that works downstream of TRIF–TRAF6. Furthermore, although A20 is known as a signaling fine-tuner to prevent excess TLR signaling, it paradoxically downregulates the fine-tuning effect of NDP52 on TLR signaling

    Physicochemical and textural quality attributes of gluten-free bread formulated with guar gum

    Get PDF
    The objective of this study was to assess the combined effect of guar gum (GG) and water content (WC) on the rheological properties of batter, and the physicochemical and textural properties of bread. Batches of gluten-free bread used a base formulation of rice (50%), maize (30%) and quinoa flour (20%), with different levels of GG (2.5, 3.0 or 3.5%) and water (90, 100 or 110%) in a full factorial design. Higher GG doses (p<0.001) tended to produce batters of lower stickiness, work of adhesion and cohesive strength; yet, of higher firmness, consistency, cohesiveness and viscosity index. These batters yielded loaves of lower (p<0.001) specific volume and baking loss; and crumbs of lower (p<0.001) aw, pH, mean cell area, void fraction, mean cell aspect ratio; and higher (p<0.001) hardness, adhesiveness, springiness, cohesiveness, chewiness, resilience, mean cell density, cell size uniformity and mean cell compactness. The sticker and less consistent batters produced with higher WC rendered larger bread loaves of softer and more cohesive and springy/resilient crumbs with greater mean cell size and void fraction. Gluten-free loaves of good appearance in terms of higher specific volume, lower crumb hardness, higher crumb springiness, and open grain visual texture were obtained in formulations with 110% WC and GG doses between 2.5 and 3.0%.Eng. Encina-Zelada acknowledges the financial aid provided by the Peruvian National Programme of Scholarships and Student Loans (PRONABEC) in the mode of PhD grants (Presidente de la RepĂșblica-183308). The authors are grateful to Eng. Andrea Oliveira from Prodipani, Portugal, for her kind advice and providing breadmaking ingredients.info:eu-repo/semantics/publishedVersio

    Thermorheological and textural behaviour of gluten-free gels obtained from chestnut and rice flours

    Get PDF
    Nowadays, as celiac disease is becoming more common the consumers’ demand for gluten-free products with high nutritional and taste quality is increasing. This work deals with the study of the impact of four novelty gluten-free sources: chestnut flour (Cf), whole rice flour (Rw), Carolino rice flour (Rc) and Agulha rice flour (Ra). Textural, thermorheological and stability performance of gluten-free gels using different experimental techniques were evaluated. Mixed gels were also produced for comparison. Texture parameters were determined from the texture profile analysis using a texturometer. Thermorheological oscillatory measurements were conducted in a stresscontrolled rheometer in order to clarify the kinetics of gel formation and to characterise the structure of the matured gels. The stability of the gels was evaluated using transmittance profiling of the gels under gravitational fields (LUMiSizer¼). Texture studies suggested that gels from mixtures of chestnut flour at 30 % and rice flour at 20 % showed the right texture to develop gel-based new desserts. Rheological results showed that the thermal profiles on heating of Cf gels were similar to those obtained for Rw and Ra, whereas Rc gels exhibited a particular pattern. Once the final gelatinisation temperature was achieved, no significant differences on the viscoelastic properties were noticed for all the tested gels. Stability tests showed that gels with Rc should present an industrial advantage over the other assayed formulations, since the stability of these gels is of the order of four times larger

    A cartilage tissue engineering approach combining starch-polycaprolactone fibre mesh scaffolds with bovine articular chondrocytes

    Get PDF
    In the present work we originally tested the suitability of corn starch-polycaprolactone (SPCL) scaffolds for pursuing a cartilage tissue engineering approach. Bovine articular chondrocytes were seeded on SPCL scaffolds under dynamic conditions using spinner flasks (total of 4 scaffolds per spinner flask using cell suspensions of 0.5×106 cells/ml) and cultured under orbital agitation for a total of 6 weeks. Poly(glycolic acid) (PGA) non-woven scaffolds and bovine native articular cartilage were used as standard controls for the conducted experiments. PGA is a kind of standard in tissue engineering approaches and it was used as a control in that sense. The tissue engineered constructs were characterized at different time periods by scanning electron microscopy (SEM), hematoxylin-eosin (H&E) and toluidine blue stainings, immunolocalisation of collagen types I and II, and dimethylmethylene blue (DMB) assay for glycosaminoglycans (GAG) quantification assay. SEM results for SPCL constructs showed that the chondrocytes presented normal morphological features, with extensive cells presence at the surface of the support structures, and penetrating the scaffolds pores. These observations were further corroborated by H&E staining. Toluidine blue and immunohistochemistry exhibited extracellular matrix deposition throughout the 3D structure. Glycosaminoglycans, and collagen types I and II were detected. However, stronger staining for collagen type II was observed when compared to collagen type I. The PGA constructs presented similar features toSPCLat the end of the 6 weeks. PGA constructs exhibited higher amounts of matrix glycosaminoglycans when compared to the SPCL scaffolds. However, we also observed a lack of tissue in the central area of the PGA scaffolds. Reasons for these occurrences may include inefficient cells penetration, necrosis due to high cell densities, or necrosis related with acidic by-products degradation. Such situation was not detected in the SPCL scaffolds, indicating the much better biocompatibility of the starch based scaffolds

    Toll-Like Receptor 3 (TLR3) Plays a Major Role in the Formation of Rabies Virus Negri Bodies

    Get PDF
    Human neurons express the innate immune response receptor, Toll-like receptor 3 (TLR3). TLR3 levels are increased in pathological conditions such as brain virus infection. Here, we further investigated the production, cellular localisation, and function of neuronal TLR3 during neuronotropic rabies virus (RABV) infection in human neuronal cells. Following RABV infection, TLR3 is not only present in endosomes, as observed in the absence of infection, but also in detergent-resistant perinuclear inclusion bodies. As well as TLR3, these inclusion bodies contain the viral genome and viral proteins (N and P, but not G). The size and composition of inclusion bodies and the absence of a surrounding membrane, as shown by electron microscopy, suggest they correspond to the previously described Negri Bodies (NBs). NBs are not formed in the absence of TLR3, and TLR3−/− mice—in which brain tissue was less severely infected—had a better survival rate than WT mice. These observations demonstrate that TLR3 is a major molecule involved in the spatial arrangement of RABV–induced NBs and viral replication. This study shows how viruses can exploit cellular proteins and compartmentalisation for their own benefit
    • 

    corecore