401 research outputs found

    On the curvature of vortex moduli spaces

    Get PDF
    We use algebraic topology to investigate local curvature properties of the moduli spaces of gauged vortices on a closed Riemann surface. After computing the homotopy type of the universal cover of the moduli spaces (which are symmetric powers of the surface), we prove that, for genus g>1, the holomorphic bisectional curvature of the vortex metrics cannot always be nonnegative in the multivortex case, and this property extends to all Kaehler metrics on certain symmetric powers. Our result rules out an established and natural conjecture on the geometry of the moduli spaces.Comment: 25 pages; final version, to appear in Math.

    Genetic variation in the Solanaceae fruit bearing species lulo and tree tomato revealed by Conserved Ortholog (COSII) markers

    Get PDF
    The Lulo or naranjilla (Solanum quitoense Lam.) and the tree tomato or tamarillo (Solanum betaceum Cav. Sendt.) are both Andean tropical fruit species with high nutritional value and the potential for becoming premium products in local and export markets. Herein, we present a report on the genetic characterization of 62 accessions of lulos (n = 32) and tree tomatoes (n = 30) through the use of PCR-based markers developed from single-copy conserved orthologous genes (COSII) in other Solanaceae (Asterid) species. We successfully PCR amplified a set of these markers for lulos (34 out of 46 initially tested) and tree tomatoes (26 out of 41) for molecular studies. Six polymorphic COSII markers were found in lulo with a total of 47 alleles and five polymorphic markers in tree tomato with a total of 39 alleles in the two populations. Further genetic analyses indicated a high population structure (with FST > 0.90), which may be a result of low migration between populations, adaptation to various niches and the number of markers evaluated. We propose COSII markers as sound tools for molecular studies, conservation and the breeding of these two fruit species

    Location of chlorogenic acid biosynthesis pathway and polyphenol oxidase genes in a new interspecific anchored linkage map of eggplant

    Get PDF
    © Gramazio et al.; licensee BioMed Central. 2014. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated

    The distribution of genetic diversity in a Brassica oleracea gene bank collection related to the effects on diversity of regeneration, as measured with AFLPs

    Get PDF
    The ex situ conservation of plant genetic resources in gene banks involves the selection of accessions to be conserved and the maintenance of these accessions for current and future users. Decisions concerning both these issues require knowledge about the distribution of genetic diversity within and between accessions sampled from the gene pool, but also about the changes in variation of these samples as a result of regenerations. These issues were studied in an existing gene bank collection of a cross-pollinating crop using a selection of groups of very similar Dutch white cabbage accessions, and additional groups of reference material representing the Dutch, and the global white cabbage gene pool. Six accessions were sampled both before and after a standard regeneration. 30 plants of each of 50 accessions plus 6 regeneration populations included in the study were characterised with AFLPs, using scores for 103 polymorphic bands. It was shown that the genetic changes as a result of standard gene bank regenerations, as measured by AFLPs, are of a comparable magnitude as the differences between some of the more similar accessions. The observed changes are mainly due to highly significant changes in allele frequencies for a few fragments, whereas for the majority of fragments the alleles occur in similar frequencies before and after regeneration. It is argued that, given the changes of accessions over generations, accessions that display similar levels of differentiation may be combined safely

    Recovery of a temperate reef assemblage in a marine protected area following the exclusion of towed demersal fishing.

    Get PDF
    Marine Protected Areas MPA have been widely used over the last 2 decades to address human impacts on marine habitats within an ecosystem management context. Few studies have quantified recovery of temperate rocky reef communities following the cessation of scallop dredging or demersal trawling. This is critical information for the future management of these habitats to contribute towards conservation and fisheries targets. The Lyme Bay MPA, in south west UK, has excluded towed demersal fishing gear from 206 km(2) of sensitive reef habitat using a Statutory Instrument since July 2008. To assess benthic recovery in this MPA we used a flying video array to survey macro epi-benthos annually from 2008 to 2011. 4 treatments (the New Closure, previously voluntarily Closed Controls and Near or Far Open to fishing Controls) were sampled to test a recovery hypothesis that was defined as 'the New Closure becoming more similar to the Closed Controls and less similar to the Open Controls'. Following the cessation of towed demersal fishing, within three years positive responses were observed for species richness, total abundance, assemblage composition and seven of 13 indicator taxa. Definitive evidence of recovery was noted for species richness and three of the indicator taxa (Pentapora fascialis, Phallusia mammillata and Pecten maximus). While it is hoped that MPAs, which exclude anthropogenic disturbance, will allow functional restoration of goods and services provided by benthic communities, it is an unknown for temperate reef systems. Establishing the likely timescales for restoration is key to future marine management. We demonstrate the early stages of successful recruitment and link these to the potential wider ecosystem benefits including those to commercial fisheries

    Mapping and characterization of novel parthenocarpy QTLs in tomato

    Get PDF
    Parthenocarpy is the development of the fruit in absence of pollination and/or fertilization. In tomato, parthenocarpy is considered as an attractive trait to solve the problems of fruit setting under unfavorable conditions. We studied the genetics of parthenocarpy in two different lines, IL5-1 and IVT-line 1, both carrying Solanum habrochaites chromosome segments. Parthenocarpy in IL5-1 is under the control of two QTLs, one on chromosome 4 (pat4.1) and one on chromosome 5 (pat5.1). IVT-line 1 also contains two parthenocarpy QTLs, one on chromosome 4 (pat4.2) and one on chromosome 9 (pat9.1). In addition, we identified one stigma exsertion locus in IL5-1, located on the long arm of chromosome 5 (se5.1). It is likely that pat4.1, from IL5-1 and pat4.2, from IVT-line 1, both located near the centromere of chromosome 4 are allelic. By making use of the microsynteny between tomato and Arabidopsis in this genetic region, we identified ARF8 as a potential candidate gene for these two QTLs. ARF8 is known to act as an inhibitor for further carpel development in Arabidopsis, in absence of pollination/fertilization. Expression of an aberrant form of the ArabidopsisARF8 gene, in tomato, has been found to cause parthenocarpy. This candidate gene approach may lead to the first isolation of a parthenocarpy gene in tomato and will allow further use in several crop species

    An interspecific linkage map of SSR and intronic polymorphism markers in tomato

    Get PDF
    Despite the collection and availability of abundant tomato genome sequences, PCR-based markers adapted to large scale analysis have not been developed in tomato species. Therefore, using public genome sequence data in tomato, we developed three types of DNA markers: expressed sequence tag (EST)-derived simple sequence repeat (SSR) markers (TES markers), genome-derived SSR markers (TGS markers) and EST-derived intronic polymorphism markers (TEI markers). A total of 2,047 TES, 3,510 TGS and 674 TEI markers were established and used in the polymorphic analysis of a cultivated tomato (Solanum lycopersicum) ‘LA925’ and its wild relative Solanum pennellii ‘LA716’, parents of the Tomato-EXPEN 2000 mapping population. The polymorphic ratios between parents revealed by the TES, TGS and TEI markers were 37.3, 22.6 and 80.0%, respectively. Those showing polymorphisms were used to genotype the Tomato-EXPEN 2000 mapping population, and a high-density genetic linkage map composed of 1,433 new and 683 existing marker loci was constructed on 12 chromosomes, covering 1,503.1 cM. In the present map, 48% of the mapped TGS loci were located within heterochromatic regions, while 18 and 21% of TES and TEI loci, respectively, were located in heterochromatin. The large number of SSR and SNP markers developed in this study provide easily handling genomic tools for molecular breeding in tomato. Information on the DNA markers developed in this study is available at http://www.kazusa.or.jp/tomato/

    A PSTOL-like gene, TaPSTOL, controls a number of agronomically important traits in wheat

    Get PDF
    Background Phosphorus (P) is an essential macronutrient for plant growth, and is required in large quantities by elite varieties of crops to maintain yields. Approximately 70% of global cultivated land suffers from P deficiency, and it has recently been estimated that worldwide P resources will be exhausted by the end of this century, increasing the demand for crops more efficient in their P usage. A greater understanding of how plants are able to maintain yield with lower P inputs is, therefore, highly desirable to both breeders and farmers. Here, we clone the wheat (Triticum aestivum L.) homologue of the rice PSTOL gene (OsPSTOL), and characterize its role in phosphate nutrition plus other agronomically important traits. Results TaPSTOL is a single copy gene located on the short arm of chromosome 5A, encoding a putative kinase protein, and shares a high level of sequence similarity to OsPSTOL. We re-sequenced TaPSTOL from 24 different wheat accessions and (3) three T. durum varieties. No sequence differences were detected in 26 of the accessions, whereas two indels were identified in the promoter region of one of the durum wheats. We characterised the expression of TaPSTOL under different P concentrations and demonstrated that the promoter was induced in root tips and hairs under P limiting conditions. Overexpression and RNAi silencing of TaPSTOL in transgenic wheat lines showed that there was a significant effect upon root biomass, flowering time independent of P treatment, tiller number and seed yield, correlating with the expression of TaPSTOL. However this did not increase PUE as elevated P concentration in the grain did not correspond to increased yields. Conclusions Manipulation of TaPSTOL expression in wheat shows it is responsible for many of the previously described phenotypic advantages as OsPSTOL except yield. Furthermore, we show TaPSTOL contributes to additional agronomically important traits including flowering time and grain size. Analysis of TaPSTOL sequences from a broad selection of wheat varieties, encompassing 91% of the genetic diversity in UK bread wheat, showed that there is very little genetic variation in this gene, which would suggest that this locus may have been under high selection pressure
    corecore