118 research outputs found

    Electronic Medical Record Inaccuracies: Multicenter Analysis of Challenges with Modified Lung Cancer Screening Criteria.

    Get PDF
    The National Comprehensive Cancer Network expanded their lung cancer screening (LCS) criteria to comprise one additional clinical risk factor, including chronic obstructive pulmonary disease (COPD). The electronic medical record (EMR) is a source of clinical information that could identify high-risk populations for LCS, including a diagnosis of COPD; however, an unsubstantiated COPD diagnosis in the EMR may lead to inappropriate LCS referrals. We aimed to detect the prevalence of unsubstantiated COPD diagnosis in the EMR for LCS referrals, to determine the efficacy of utilizing the EMR as an accurate population-based eligibility screening trigger using modified clinical criteria. We performed a multicenter review of all individuals referred to three LCS programs from 2012 to 2015. Each individual\u27s EMR was searched for COPD diagnostic terms and the presence of a diagnostic pulmonary functionality test (PFT). An unsubstantiated COPD diagnosis was defined by an individual\u27s EMR containing a COPD term with no PFTs present, or the presence of PFTs without evidence of obstruction. A total of 2834 referred individuals were identified, of which 30% (840/2834) had a COPD term present in their EMR. Of these, 68% (571/840) were considered unsubstantiated diagnoses: 86% (489/571) due to absent PFTs and 14% (82/571) due to PFTs demonstrating no evidence of postbronchodilation obstruction. A large proportion of individuals referred for LCS may have an unsubstantiated COPD diagnosis within their EMR. Thus, utilizing the EMR as a population-based eligibility screening tool, employing expanded criteria, may lead to individuals being referred, potentially, inappropriately for LCS

    Incidence, severity, aetiology and type of neck injury in men's amateur rugby union: a prospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is a paucity of epidemiological data on neck injury in amateur rugby union populations. The objective of this study was to determine the incidence, severity, aetiology and type of neck injury in Australian men's amateur rugby union.</p> <p>Methods</p> <p>Data was collected from a cohort of 262 participants from two Australian amateur men's rugby union clubs via a prospective cohort study design. A modified version of the Rugby Union Injury Report Form for Games and Training was used by the clubs physiotherapist or chiropractor in data collection.</p> <p>Results</p> <p>The participants sustained 90 (eight recurrent) neck injuries. Exposure time was calculated at 31143.8 hours of play (12863.8 hours of match time and 18280 hours of training). Incidence of neck injury was 2.9 injuries/1000 player-hours (95%CI: 2.3, 3.6). As a consequence 69.3% neck injuries were minor, 17% mild, 6.8% moderate and 6.8% severe. Neck compression was the most frequent aetiology and was weakly associated with severity. Cervical facet injury was the most frequent neck injury type.</p> <p>Conclusions</p> <p>This is the first prospective cohort study in an amateur men's rugby union population since the inception of professionalism that presents injury rate, severity, aetiology and injury type data for neck injury. Current epidemiological data should be sought when evaluating the risks associated with rugby union football.</p

    Why Rice Farmers Don't Sail: Coastal Subsistence Traditions and Maritime Trends in Early China

    Get PDF
    The Lower Yangtze River Valley is a key region for the early development of rice farming and the emergence of wet rice paddy field systems. Subsistence evidence from Neolithic sites in this area highlights the importance of freshwater wetlands for both plant and animal food resources. Early Neolithic rice cultivators looked inland, especially to wetlands and nearby woodlands, for their main protein sources. Links to the sea among these Neolithic populations are notably scarce. Due to the high yields of wet rice, compared with other staple crops as well as dryland rice, the wetland rice focused subsistence strategy of the Lower Yangtze would have supported high, and increasing, local population densities. Paddy agriculture demands labor input and water management on a large scale, which would have stimulated and reinforced trends towards more complex societies, such as that represented by Liangzhu in the lower Yangtze region. Population growth could have been largely absorbed locally, suggesting that population packing, not migration, was the dominant trend. Other case studies of agricultural dispersal, for the Korean Peninsula and Japan further illustrate the lack of correlation between the spread of rice agriculture and wet rice cultivation. Although wet rice cultivation was a pull factor that drew local populations towards increased density and increased social complexity, it did not apparently push groups to migrate outwards. Instead, the transition from wetland to rain fed rice cultivation systems and/or the integration of rice with rain fed millet crops are much more likely to have driven the demographic dynamics that underpin early farmer migrations and crop dispersal

    Horizontal gene transfer in Histophilus somni and its role in the evolution of pathogenic strain 2336, as determined by comparative genomic analyses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pneumonia and myocarditis are the most commonly reported diseases due to <it>Histophilus somni</it>, an opportunistic pathogen of the reproductive and respiratory tracts of cattle. Thus far only a few genes involved in metabolic and virulence functions have been identified and characterized in <it>H. somni </it>using traditional methods. Analyses of the genome sequences of several <it>Pasteurellaceae </it>species have provided insights into their biology and evolution. In view of the economic and ecological importance of <it>H. somni</it>, the genome sequence of pneumonia strain 2336 has been determined and compared to that of commensal strain 129Pt and other members of the <it>Pasteurellaceae</it>.</p> <p>Results</p> <p>The chromosome of strain 2336 (2,263,857 bp) contained 1,980 protein coding genes, whereas the chromosome of strain 129Pt (2,007,700 bp) contained only 1,792 protein coding genes. Although the chromosomes of the two strains differ in size, their average GC content, gene density (total number of genes predicted on the chromosome), and percentage of sequence (number of genes) that encodes proteins were similar. The chromosomes of these strains also contained a number of discrete prophage regions and genomic islands. One of the genomic islands in strain 2336 contained genes putatively involved in copper, zinc, and tetracycline resistance. Using the genome sequence data and comparative analyses with other members of the <it>Pasteurellaceae</it>, several <it>H. somni </it>genes that may encode proteins involved in virulence (<it>e.g</it>., filamentous haemaggutinins, adhesins, and polysaccharide biosynthesis/modification enzymes) were identified. The two strains contained a total of 17 ORFs that encode putative glycosyltransferases and some of these ORFs had characteristic simple sequence repeats within them. Most of the genes/loci common to both the strains were located in different regions of the two chromosomes and occurred in opposite orientations, indicating genome rearrangement since their divergence from a common ancestor.</p> <p>Conclusions</p> <p>Since the genome of strain 129Pt was ~256,000 bp smaller than that of strain 2336, these genomes provide yet another paradigm for studying evolutionary gene loss and/or gain in regard to virulence repertoire and pathogenic ability. Analyses of the complete genome sequences revealed that bacteriophage- and transposon-mediated horizontal gene transfer had occurred at several loci in the chromosomes of strains 2336 and 129Pt. It appears that these mobile genetic elements have played a major role in creating genomic diversity and phenotypic variability among the two <it>H. somni </it>strains.</p

    Pattern Recognition Software and Techniques for Biological Image Analysis

    Get PDF
    The increasing prevalence of automated image acquisition systems is enabling new types of microscopy experiments that generate large image datasets. However, there is a perceived lack of robust image analysis systems required to process these diverse datasets. Most automated image analysis systems are tailored for specific types of microscopy, contrast methods, probes, and even cell types. This imposes significant constraints on experimental design, limiting their application to the narrow set of imaging methods for which they were designed. One of the approaches to address these limitations is pattern recognition, which was originally developed for remote sensing, and is increasingly being applied to the biology domain. This approach relies on training a computer to recognize patterns in images rather than developing algorithms or tuning parameters for specific image processing tasks. The generality of this approach promises to enable data mining in extensive image repositories, and provide objective and quantitative imaging assays for routine use. Here, we provide a brief overview of the technologies behind pattern recognition and its use in computer vision for biological and biomedical imaging. We list available software tools that can be used by biologists and suggest practical experimental considerations to make the best use of pattern recognition techniques for imaging assays

    Importance of patient bed pathways and length of stay differences in predicting COVID-19 hospital bed occupancy in England.

    Get PDF
    Background: Predicting bed occupancy for hospitalised patients with COVID-19 requires understanding of length of stay (LoS) in particular bed types. LoS can vary depending on the patient’s “bed pathway” - the sequence of transfers of individual patients between bed types during a hospital stay. In this study, we characterise these pathways, and their impact on predicted hospital bed occupancy. Methods: We obtained data from University College Hospital (UCH) and the ISARIC4C COVID-19 Clinical Information Network (CO-CIN) on hospitalised patients with COVID-19 who required care in general ward or critical care (CC) beds to determine possible bed pathways and LoS. We developed a discrete-time model to examine the implications of using either bed pathways or only average LoS by bed type to forecast bed occupancy. We compared model-predicted bed occupancy to publicly available bed occupancy data on COVID-19 in England between March and August 2020. Results: In both the UCH and CO-CIN datasets, 82% of hospitalised patients with COVID-19 only received care in general ward beds. We identified four other bed pathways, present in both datasets: “Ward, CC, Ward”, “Ward, CC”, “CC” and “CC, Ward”. Mean LoS varied by bed type, pathway, and dataset, between 1.78 and 13.53 days. For UCH, we found that using bed pathways improved the accuracy of bed occupancy predictions, while only using an average LoS for each bed type underestimated true bed occupancy. However, using the CO-CIN LoS dataset we were not able to replicate past data on bed occupancy in England, suggesting regional LoS heterogeneities. Conclusions: We identified five bed pathways, with substantial variation in LoS by bed type, pathway, and geography. This might be caused by local differences in patient characteristics, clinical care strategies, or resource availability, and suggests that national LoS averages may not be appropriate for local forecasts of bed occupancy for COVID-19. Trial registration: The ISARIC WHO CCP-UK study ISRCTN66726260 was retrospectively registered on 21/04/2020 and designated an Urgent Public Health Research Study by NIHR.</p

    Impact of primary kidney disease on the effects of empagliflozin in patients with chronic kidney disease: secondary analyses of the EMPA-KIDNEY trial

    Get PDF
    Background: The EMPA KIDNEY trial showed that empagliflozin reduced the risk of the primary composite outcome of kidney disease progression or cardiovascular death in patients with chronic kidney disease mainly through slowing progression. We aimed to assess how effects of empagliflozin might differ by primary kidney disease across its broad population. Methods: EMPA-KIDNEY, a randomised, controlled, phase 3 trial, was conducted at 241 centres in eight countries (Canada, China, Germany, Italy, Japan, Malaysia, the UK, and the USA). Patients were eligible if their estimated glomerular filtration rate (eGFR) was 20 to less than 45 mL/min per 1·73 m2, or 45 to less than 90 mL/min per 1·73 m2 with a urinary albumin-to-creatinine ratio (uACR) of 200 mg/g or higher at screening. They were randomly assigned (1:1) to 10 mg oral empagliflozin once daily or matching placebo. Effects on kidney disease progression (defined as a sustained ≥40% eGFR decline from randomisation, end-stage kidney disease, a sustained eGFR below 10 mL/min per 1·73 m2, or death from kidney failure) were assessed using prespecified Cox models, and eGFR slope analyses used shared parameter models. Subgroup comparisons were performed by including relevant interaction terms in models. EMPA-KIDNEY is registered with ClinicalTrials.gov, NCT03594110. Findings: Between May 15, 2019, and April 16, 2021, 6609 participants were randomly assigned and followed up for a median of 2·0 years (IQR 1·5–2·4). Prespecified subgroupings by primary kidney disease included 2057 (31·1%) participants with diabetic kidney disease, 1669 (25·3%) with glomerular disease, 1445 (21·9%) with hypertensive or renovascular disease, and 1438 (21·8%) with other or unknown causes. Kidney disease progression occurred in 384 (11·6%) of 3304 patients in the empagliflozin group and 504 (15·2%) of 3305 patients in the placebo group (hazard ratio 0·71 [95% CI 0·62–0·81]), with no evidence that the relative effect size varied significantly by primary kidney disease (pheterogeneity=0·62). The between-group difference in chronic eGFR slopes (ie, from 2 months to final follow-up) was 1·37 mL/min per 1·73 m2 per year (95% CI 1·16–1·59), representing a 50% (42–58) reduction in the rate of chronic eGFR decline. This relative effect of empagliflozin on chronic eGFR slope was similar in analyses by different primary kidney diseases, including in explorations by type of glomerular disease and diabetes (p values for heterogeneity all &gt;0·1). Interpretation: In a broad range of patients with chronic kidney disease at risk of progression, including a wide range of non-diabetic causes of chronic kidney disease, empagliflozin reduced risk of kidney disease progression. Relative effect sizes were broadly similar irrespective of the cause of primary kidney disease, suggesting that SGLT2 inhibitors should be part of a standard of care to minimise risk of kidney failure in chronic kidney disease. Funding: Boehringer Ingelheim, Eli Lilly, and UK Medical Research Council

    The impact of viral mutations on recognition by SARS-CoV-2 specific T cells.

    Get PDF
    We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC
    corecore