70 research outputs found

    Tbx1 Regulates the BMP-Smad1 Pathway in a Transcription Independent Manner

    Get PDF
    Tbx1 is a T-box transcription factor implicated in DiGeorge syndrome. The molecular function of Tbx1 is unclear although it can transactivate reporters with T-box binding elements. We discovered that Tbx1 binds Smad1 and suppresses the Bmp4/Smad1 signaling. Tbx1 interferes with Smad1 to Smad4 binding, and a mutation of Tbx1 that abolishes transactivation, does not affect Smad1 binding nor does affect the ability to suppress Smad1 activity. In addition, a disease-associated mutation of TBX1 that does not prevent transactivation, prevents the TBX1-SMAD1 interaction. Expression of Tbx1 in transgenic mice generates phenotypes similar to those associated with loss of a Bmp receptor. One phenotype could be rescued by transgenic Smad1 expression. Our data indicate that Tbx1 interferes with Bmp/Smad1 signaling and provide strong evidence that a T-box transcription factor has functions unrelated to transactivation

    Hyperphosphorylation of JNK-interacting Protein 1, a Protein Associated with Alzheimer Disease

    Get PDF
    The c-Jun N-terminal kinase (JNK) group of mitogen-activated protein (MAP) kinases are activated by pleiotropic signals including environmental stresses, growth factors, and hormones. JNK-interacting protein 1 (JIP1) is a scaffold protein that assembles and facilitates the activation of the mixed lineage kinase-dependent JNK module and also establishes an interaction with beta-amyloid precursor protein that has been partially characterized. Here we show that, similarly to other proteins involved in various neurological diseases, JIP1 becomes hyperphosphorylated following activation of stress-activated and MAP kinases. By immobilized metal affinity chromatography and a combined microcapillary LC/MALDI-TOF/ESI-ion trap mass spectrometry approach, we identified 35 sites of mitotic phosphorylation within JIP1, among which eight were present within (Ser/Thr)-Pro sequence. This motif is modified by various kinases in aggregates of the microtubule-associated protein tau, which generates typical intraneuronal lesions occurring in Alzheimer disease. Most of the post-translational modifications found were located within the JNK, MAP kinase kinase, and RAC-alpha Ser/Thr protein kinase binding regions; no modifications occurred in protein Src homology 3 and phosphotyrosine interaction domains, which are essential for binding to kinesin, beta-amyloid precursor protein, and MAP kinase kinase kinase. Protein phosphorylation is known to affect stability and protein-protein interactions. Thus, the findings that JIP1 is extensively phosphorylated after activation of stress-activated and MAP kinases indicate that these signaling pathways might modulate JIP1 signaling by regulating its stability and association with some, but not all, interacting proteins

    Transcriptional Control in Cardiac Progenitors: Tbx1 Interacts with the BAF Chromatin Remodeling Complex and Regulates Wnt5a

    Get PDF
    Mutations of the Wnt5a gene, encoding a ligand of the non-canonical Wnt pathway, and the Ror2 gene, encoding its receptor, have been found in patients with cardiac outflow tract defects. We found that Wnt5a is expressed in the second heart field (SHF), a population of cardiac progenitor cells destined to populate the cardiac outflow tract and the right ventricle. Because of cardiac phenotype similarities between Wnt5a and Tbx1 mutant mice, we tested potential interactions between the two genes. We found a strong genetic interaction in vivo and determined that the loss of both genes caused severe hypoplasia of SHF–dependent segments of the heart. We demonstrated that Wnt5a is a transcriptional target of Tbx1 and explored the mechanisms of gene regulation. Tbx1 occupies T-box binding elements within the Wnt5a gene and interacts with the Baf60a/Smarcd1 subunit of a chromatin remodeling complex. It also interacts with the Setd7 histone H3K4 monomethyltransferase. Tbx1 enhances Baf60a occupation at the Wnt5a gene and enhances its H3K4 monomethylation status. Finally, we show that Baf60a is required for Tbx1–driven regulation of target genes. These data suggest a model in which Tbx1 interacts with, and probably recruits a specific subunit of, the BAF complex as well as histone methylases to activate or enhance transcription. We speculate that this may be a general mechanism of T-box function and that Baf60a is a key component of the transcriptional control in cardiac progenitors

    EBP1 and DRBP76/NF90 binding proteins are included in the major histocompatibility complex class II RNA operon

    Get PDF
    Major histocompatibility complex class II mRNAs encode heterodimeric proteins involved in the presentation of exogenous antigens during an immune response. Their 3′UTRs bind a protein complex in which we identified two factors: EBP1, an ErbB3 receptor-binding protein and DRBP76, a double-stranded RNA binding nuclear protein, also known as nuclear factor 90 (NF90). Both are well-characterized regulatory factors of several mRNA molecules processing. Using either EBP1 or DRBP76/NF90-specific knockdown experiments, we established that the two proteins play a role in regulating the expression of HLA-DRA, HLA-DRB1 and HLA-DQA1 mRNAs levels. Our study represents the first indication of the existence of a functional unit that includes different transcripts involved in the adaptive immune response. We propose that the concept of ‘RNA operon’ may be suitable for our system in which MHCII mRNAs are modulated via interaction of their 3′UTR with same proteins

    Detecting 22q11.2 deletion in Chinese children with conotruncal heart defects and single nucleotide polymorphisms in the haploid TBX1 locus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Conotruncal heart defects (CTDs) are present in 75-85% of patients suffering from the 22q11.2 deletion syndrome. To date, no consistent phenotype has been consistently correlated with the 22q11.2 deletions. Genetic studies have implicated <it>TBX1 </it>as a critical gene in the pathogenesis of the syndrome. The aim of study was to determine the incidence of the 22q11.2 deletion in Chinese patients with CTDs and the possible mechanism for pathogenesis of CTDs.</p> <p>Methods</p> <p>We enrolled 212 patients with CTDs and 139 unrelated healthy controls. Both karyotypic analysis and multiplex ligation-dependent probe amplification were performed for all CTDs patients. Fluorescence <it>in situ </it>hybridization was performed for the patients with genetic deletions and their relatives. The <it>TBX1 </it>gene was sequenced for all patients and healthy controls. The <it>χ</it><sup>2 </sup>and Fisher's exact test were used in the statistical analysis.</p> <p>Results</p> <p>Thirteen of the 212 patients with CTDs (6.13%) were found to have the 22q11.2 deletion syndrome. Of the 13 cases, 11 presented with a hemizygous interstitial microdeletion from <it>CLTCL1 </it>to <it>LZTR1</it>; one presented with a regional deletion from <it>CLTCL1 </it>to <it>DRCR8</it>; and one presented with a regional deletion from <it>CDC45L </it>to <it>LZTR1</it>. There were eight sequence variants in the haploid <it>TBX1 </it>genes of the del22q11 CTDs patients. The frequency of one single nucleotide polymorphism (SNP) in the del22q11 patients was different from that of the non-del patients (<it>P </it>< 0.05), and the frequencies of two other SNPs were different between the non-del CTDs patients and controls (<it>P </it>< 0.05).</p> <p>Conclusions</p> <p>CTDs, especially pulmonary atresia with ventricular septal defect and tetralogy of Fallot, are the most common disorders associated with the 22q11.2 deletion syndrome. Those patients with both CTDs and 22q11.2 deletion generally have a typical or atypical deletion region within the <it>TBX1 </it>gene. Our results indicate that <it>TBX1 </it>genetic variants may be associated with CTDs.</p

    Of mice and men: molecular genetics of congenital heart disease

    Get PDF

    Tbx1 regulates Smad signaling.

    No full text
    To have insight into the molecular mechanisms governing the function of Tbx1, a transcription factor involved in DiGeorge syndrome (DGS) and cardiovascular development, we searched for proteins interacting with it. Using an affinity purification protocol followed by a candidate protein approach, we found that Smad1/5/8 interacted with Tbx1. To confirm this interaction, protein extracts from mouse embryos were co-immunoprecipitated with an antibody anti Tbx1 and analyzed by western-blot. Results confirmed the interaction and revealed that Smad1 is the protein directly interacting with Tbx1. Next, we tested TBX1 missense mutations found associated with a DGS phenotype but. Results indicate that one of the mutant isoforms is unable to bind Smad1. To examine the role of Tbx1 in the regulation of transcriptional responses induced by Smad1 we performed luciferase assays and the results show that Tbx1 is capable of suppressing the activity of a Smad signaling reporter in a dosage-dependent manner. We also found, using a Co-IP approach, that Tbx1 inhibits Smad signaling activity by competing with Smad4 for binding to Smad1. Using a Tbx1 mutant isoform that prevents DNA binding, we found that this suppression is not dependent upon Tbx1-DNA binding. We in addition provided evidence that Tbx1 overexpression in mice causes a phenotype similar to that caused by loss of Smad1-dependent signaling in the same tissues (including cleft lip and outflow heart defects) and downregulates Smad1 target genes such as Msx1 and 15 Msx2. In conclusion, our data demonstrate a mechanism by which Tbx1 interferes with the Bmp/Smad1 signal transduction pathway in tissue culture and during mammalian development. In addition, we provide evidence that a T-box transcription factor can have functions not directly related to or mediated by its transactivation activity

    The CMBR spectrum: new upper limits for the distortion parameters y and mu

    No full text
    The CMBR Spectrum has been measured by the COBE-FIRAS experiment. Upper limits only have been found for distortion parameters y and m: y &lt;1.5 10^-5 and m 9 10^-5 at 95% of confidence. FIRAS made differential measurements between sky and blackbody calibrator. The knowledge of its emissivity is important as far as y and m measurements as concerned. We have re-estimated the XCAL emissivity by using Ray-Tracing techniques. Diffraction problems have been analyzed by a model based on waveguide approximation: it allowed us to define a propagation function t inside the XCAL V-groove. The emission of the external calibrator distorted with respect to the Black-Body emission may result in lower upper limits to y and m. New upper limits for distortion parameters y and m have been calculated considering the new XCAL emissivity. The results are: y &lt; 3.1 10^-5 and m &lt; 4.5 10^-4 at 95% of confidenc

    Ischemic necrosis of the sigmoid colon after antegrade sclerotherapy of idiopathic varicocele: \u2028a case report

    No full text
    A 34-year-old man affected by grade IV idiopathic varicocele with mild testicolar pain, severe oligoasthenozoospermia and infertility, underwent an antegrade sclerotherapy according to Tauber surgical technique. After 5 days, the patient underwent a laparoscopic left colon resection with colonstomy due to a segmental infarction of the sigmoid colon
    corecore