10,162 research outputs found
An edge index for the Quantum Spin-Hall effect
Quantum Spin-Hall systems are topological insulators displaying
dissipationless spin currents flowing at the edges of the samples. In
contradistinction to the Quantum Hall systems where the charge conductance of
the edge modes is quantized, the spin conductance is not and it remained an
open problem to find the observable whose edge current is quantized. In this
paper, we define a particular observable and the edge current corresponding to
this observable. We show that this current is quantized and that the
quantization is given by the index of a certain Fredholm operator. This
provides a new topological invariant that is shown to take same values as the
Spin-Chern number previously introduced in the literature. The result gives an
effective tool for the investigation of the edge channels' structure in Quantum
Spin-Hall systems. Based on a reasonable assumption, we also show that the edge
conducting channels are not destroyed by a random edge.Comment: 4 pages, 3 figure
Interaction of massless Dirac field with a Poincar\'e gauge field
In this paper we consider a model of Poincar\'e gauge theory (PGT) in which a
translational gauge field and a Lorentz gauge field are actually identified
with the Einstein's gravitational field and a pair of ``Yang-Mills'' field and
its partner, respectively.In this model we re-derive some special solutions and
take up one of them. The solution represents a ``Yang-Mills'' field without its
partner field and the Reissner-Nordstr\"om type spacetime, which are generated
by a PGT-gauge charge and its mass.It is main purpose of this paper to
investigate the interaction of massless Dirac fields with those fields. As a
result, we find an interesting fact that the left-handed massless Dirac fields
behave in the different manner from the right-handed ones. This can be
explained as to be caused by the direct interaction of Dirac fields with the
``Yang-Mills'' field. Accordingly, the phenomenon can not happen in the
behavior of the neutrino waves in ordinary Reissner-Nordstr\"om geometry. The
difference between left- and right-handed effects is calculated quantitatively,
considering the scattering problems of the massless Dirac fields by our
Reissner-Nordstr\"om type black-hole.Comment: 10pages, RevTeX3.
The Supernova Remnant W44: confirmations and challenges for cosmic-ray acceleration
The middle-aged supernova remnant (SNR) W44 has recently attracted attention
because of its relevance regarding the origin of Galactic cosmic-rays. The
gamma-ray missions AGILE and Fermi have established, for the first time for a
SNR, the spectral continuum below 200 MeV which can be attributed to neutral
pion emission. Confirming the hadronic origin of the gamma-ray emission near
100 MeV is then of the greatest importance. Our paper is focused on a global
re-assessment of all available data and models of particle acceleration in W44,
with the goal of determining on a firm ground the hadronic and leptonic
contributions to the overall spectrum. We also present new gamma-ray and CO
NANTEN2 data on W44, and compare them with recently published AGILE and Fermi
data. Our analysis strengthens previous studies and observations of the W44
complex environment and provides new information for a more detailed modeling.
In particular, we determine that the average gas density of the regions
emitting 100 MeV - 10 GeV gamma-rays is relatively high (n= 250 - 300 cm^-3).
The hadronic interpretation of the gamma-ray spectrum of W44 is viable, and
supported by strong evidence. It implies a relatively large value for the
average magnetic field (B > 10^2 microG) in the SNR surroundings, sign of field
amplification by shock-driven turbulence. Our new analysis establishes that the
spectral index of the proton energy distribution function is p1 = 2.2 +/- 0.1
at low energies and p2 = 3.2 +/- 0.1 at high energies. We critically discuss
hadronic versus leptonic-only models of emission taking into account
simultaneously radio and gamma-ray data. We find that the leptonic models are
disfavored by the combination of radio and gamma-ray data. Having determined
the hadronic nature of the gamma-ray emission on firm ground, a number of
theoretical challenges remains to be addressed.Comment: 13 pages, 11 figures, accepted by A&
Rural Finance and Microfinance Development in Transition Countries in Southeast and East Asia
Microfinance is an emerging important financial subsector in Asian transition countries. Its role is to improve financial access of the poor and small economic players and thus help them to build assets, thereby contribute to poverty alleviation. This paper provides an overview of rural finance and microfinance development in transition countries in Southeast and East AsiaCambodia, Lao PDR, Myanmar, Vietnam, and Mongoliafocusing on the institutional evolution and the inter-relation between policies and institutions. We find diverse potentials that formal and semi-formal financial institutionagricultural banks, microfinance banks, microfinance NGOs, financial cooperatives and other indigenous financial systemshave to reach out to the rural poor of respective nations. Any monolithic view that expects a single type of microfinance institutions to dominate the rural financial markets is to be denied. To develop effective rural financial systems, some policy implications are drawn, such as reforms of agricultural banks, adoption of market-based policy framework, development of retail capacities of microfinance institutions, progressive establishment of legal and regulatory framework for microfinance, improvement in governance of indigenous financial systems, and the importance of savings mobilization
Topological aspects of quantum spin Hall effect in graphene: Z topological order and spin Chern number
For generic time-reversal invariant systems with spin-orbit couplings, we
clarify a close relationship between the Z topological order and the spin
Chern number proposed by Kane and Mele and by Sheng {\it et al.}, respectively,
in the quantum spin Hall effect. It turns out that a global gauge
transformation connects different spin Chern numbers (even integers) modulo 4,
which implies that the spin Chern number and the Z topological order yield
the same classification. We present a method of computing spin Chern numbers
and demonstrate it in single and double plane of graphene.Comment: 5 pages, 3 figure
Recent developments in the eikonal description of the breakup of exotic nuclei
The study of exotic nuclear structures, such as halo nuclei, is usually
performed through nuclear reactions. An accurate reaction model coupled to a
realistic description of the projectile is needed to correctly interpret
experimental data. In this contribution, we briefly summarise the assumptions
made within the modelling of reactions involving halo nuclei. We describe
briefly the Continuum-Discretised Coupled Channel method (CDCC) and the
Dynamical Eikonal Approximation (DEA) in particular and present a comparison
between them for the breakup of 15C on Pb at 68AMeV. We show the problem faced
by the models based on the eikonal approximation at low energy and detail a
correction that enables their extension down to lower beam energies. A new
reaction observable is also presented. It consists of the ratio between angular
distributions for two different processes, such as elastic scattering and
breakup. This ratio is completely independent of the reaction mechanism and
hence is more sensitive to the projectile structure than usual reaction
observables, which makes it a very powerful tool to study exotic structures far
from stability.Comment: Contribution to the proceedings of the XXI International School on
Nuclear Physics and Applications & the International Symposium on Exotic
Nuclei, dedicated to the 60th Anniversary of the JINR (Dubna) (Varna,
Bulgaria, 6-12 September 2015), 7 pages, 4 figure
Mapping the Milky Way bulge at high resolution: the 3D dust extinction, CO, and X factor maps
Three dimensional interstellar extinction maps provide a powerful tool for
stellar population analysis. We use data from the VISTA Variables in the Via
Lactea survey together with the Besan\c{c}on stellar population synthesis model
of the Galaxy to determine interstellar extinction as a function of distance in
the Galactic bulge covering and . We adopted a
recently developed method to calculate the colour excess. First we constructed
the H-Ks vs. Ks and J-Ks vs. Ks colour-magnitude diagrams based on the VVV
catalogues that matched 2MASS. Then, based on the temperature-colour relation
for M giants and the distance-colour relations, we derived the extinction as a
function of distance. The observed colours were shifted to match the intrinsic
colours in the Besan\c{c}on model as a function of distance iteratively. This
created an extinction map with three dimensions: two spatial and one distance
dimension along each line of sight towards the bulge. We present a 3D
extinction map that covers the whole VVV area with a resolution of 6' x 6',
using distance bins of 0.5 kpc. The high resolution and depth of the photometry
allows us to derive extinction maps for a range of distances up to 10 kpc and
up to 30 magnitudes of extinction in . Integrated maps show the same
dust features and consistent values as other 2D maps. We discuss the spatial
distribution of dust features in the line of sight, which suggests that there
is much material in front of the Galactic bar, specifically between 5-7 kpc. We
compare our dust extinction map with high-resolution maps towards
the Galactic bulge, where we find a good correlation between and
. We determine the X factor by combining the CO map and our dust
extinction map. Our derived average value is consistent with the canonical
value of the Milky Way.Comment: 11 pages, 18 figures, accepted for publication in
Astronomy&Astrophysic
Comparative Analysis of Molecular Clouds in M31, M33 and the Milky Way
We present BIMA observations of a 2\arcmin field in the northeastern spiral
arm of M31. In this region we find six giant molecular clouds that have a mean
diameter of 5713 pc, a mean velocity width of 6.51.2 \kms, and a mean
molecular mass of 3.0 1.6 10\Msun. The peak brightness
temperature of these clouds ranges from 1.6--4.2 K. We compare these clouds to
clouds in M33 observed by \citet{wilson90} using the OVRO millimeter array, and
some cloud complexes in the Milky Way observed by \cite{dame01} using the CfA
1.2m telescope. In order to properly compare the single dish data to the
spatially filtered interferometric data, we project several well-known Milky
Way complexes to the distance of Andromeda and simulate their observation with
the BIMA interferometer. We compare the simulated Milky Way clouds with the M31
and M33 data using the same cloud identification and analysis technique and
find no significant differences in the cloud properties in all three galaxies.
Thus we conclude that previous claims of differences in the molecular cloud
properties between these galaxies may have been due to differences in the
choice of cloud identification techniques. With the upcoming CARMA array,
individual molecular clouds may be studied in a variety of nearby galaxies.
With ALMA, comprehensive GMC studies will be feasible at least as far as the
Virgo cluster. With these data, comparative studies of molecular clouds across
galactic disks of all types and between different galaxy disks will be
possible. Our results emphasize that interferometric observations combined with
the use of a consistent cloud identification and analysis technique will be
essential for such forthcoming studies that will compare GMCs in the Local
Group galaxies to galaxies in the Virgo cluster.Comment: Accepted for Publication in the Astrophysical Journa
- …
