5,562 research outputs found

    Observation of an optical non-Fermi-liquid behavior in the heavy fermion state of YbRh2_{2}Si2_{2}

    Full text link
    We report far-infrared optical properties of YbRh2_{2}Si2_{2} for photon energies down to 2 meV and temperatures 0.4 -- 300 K. In the coherent heavy quasiparticle state, a linear dependence of the low-energy scattering rate on both temperature and photon energy was found. We relate this distinct dynamical behavior different from that of Fermi liquid materials to the non-Fermi liquid nature of YbRh2_{2}Si2_{2} which is due to its close vicinity to an antiferromagnetic quantum critical point.Comment: 5 pages, 4 figures. submitte

    Upper Bounds for the Critical Car Densities in Traffic Flow Problems

    Full text link
    In most models of traffic flow, the car density pp is the only free parameter in determining the average car velocity ⟨v⟩\langle v \rangle. The critical car density pcp_c, which is defined to be the car density separating the jamming phase (with ⟨v⟩=0\langle v \rangle = 0) and the moving phase (with ⟨v⟩>0\langle v \rangle > 0), is an important physical quantity to investigate. By means of simple statistical argument, we show that pc<1p_c < 1 for the Biham-Middleton-Levine model of traffic flow in two or higher spatial dimensions. In particular, we show that pc≤11/12p_{c} \leq 11/12 in 2 dimension and pc≤1−(D−12D)Dp_{c} \leq 1 - \left( \frac{D-1}{2D} \right)^D in DD (D>2D > 2) dimensions.Comment: REVTEX 3.0, 5 pages with 1 figure appended at the back, Minor revision, to be published in the Sept issue of J.Phys.Soc.Japa

    Constrained mutual convex cone method for image set based recognition

    Get PDF
    In this paper, we propose convex cone-based frameworks for image-set classification. Image-set classification aims to classify a set of images, usually obtained from video frames or multi-view cameras, into a target object. To accurately and stably classify a set, it is essential to accurately represent structural information of the set. There are various image features, such as histogram-based features and convolutional neural network features. We should note that most of them have non-negativity and thus can be effectively represented by a convex cone. This leads us to introduce the convex cone representation to image-set classification. To establish a convex cone-based framework, we mathematically define multiple angles between two convex cones, and then use the angles to define the geometric similarity between them. Moreover, to enhance the framework, we introduce two discriminant spaces. We first propose a discriminant space that maximizes gaps between cones and minimizes the within-class variance. We then extend it to a weighted discriminant space by introducing weights on the gaps to deal with complicated data distribution. In addition, to reduce the computational cost of the proposed methods, we develop a novel strategy for fast implementation. The effectiveness of the proposed methods is demonstrated experimentally by using five databases

    Topological meaning of Z2_2 numbers in time reversal invariant systems

    Full text link
    We show that the Z2_2 invariant, which classifies the topological properties of time reversal invariant insulators, has deep relationship with the global anomaly. Although the second Chern number is the basic topological invariant characterizing time reversal systems, we show that the relative phase between the Kramers doublet reduces the topological quantum number Z to Z2_2.Comment: 4 pages, typos correcte

    Star Forming Dense Cloud Cores in the TeV {\gamma}-ray SNR RX J1713.7-3946

    Full text link
    RX J1713.7-3946 is one of the TeV {\gamma}-ray supernova remnants (SNRs) emitting synchrotron X rays. The SNR is associated with molecular gas located at ~1 kpc. We made new molecular observations toward the dense cloud cores, peaks A, C and D, in the SNR in the 12CO(J=2-1) and 13CO(J=2-1) transitions at angular resolution of 90". The most intense core in 13CO, peak C, was also mapped in the 12CO(J=4-3) transition at angular resolution of 38". Peak C shows strong signs of active star formation including bipolar outflow and a far-infrared protostellar source and has a steep gradient with a r^{-2.2±\pm0.4} variation in the average density within radius r. Peak C and the other dense cloud cores are rim-brightened in synchrotron X rays, suggesting that the dense cloud cores are embedded within or on the outer boundary of the SNR shell. This confirms the earlier suggestion that the X rays are physically associated with the molecular gas (Fukui et al. 2003). We present a scenario where the densest molecular core, peak C, survived against the blast wave and is now embedded within the SNR. Numerical simulations of the shock-cloud interaction indicate that a dense clump can indeed survive shock erosion, since shock propagation speed is stalled in the dense clump. Additionally, the shock-cloud interaction induces turbulence and magnetic field amplification around the dense clump that may facilitate particle acceleration in the lower-density inter-clump space leading to the enhanced synchrotron X rays around dense cores.Comment: 22 pages, 7 figures, to accepted in The Astrophysical Journal. A full color version with higher resolution figures is available at http://www.a.phys.nagoya-u.ac.jp/~sano/ApJ10/ms_sano.pd

    Large-scale mapping of the massive star-forming region RCW38 in the [CII] and PAH emission

    Get PDF
    We investigate the large-scale structure of the interstellar medium (ISM) around the massive star cluster RCW38 in the [CII] 158 um line and polycyclic aromatic hydrocarbon (PAH) emission. We carried out [CII] line mapping of an area of ~30'x15' for RCW~38 by a Fabry-Perot spectrometer on a 100 cm balloon-borne telescope with an angular resolution of ~1'.5. We compared the [CII] intensity map with the PAH and dust emission maps obtained by the AKARI satellite. The [CII] emission shows a highly nonuniform distribution around the cluster, exhibiting the structure widely extended to the north and the east from the center. The [CII] intensity rapidly drops toward the southwest direction, where a CO cloud appears to dominate. We decompose the 3-160 um spectral energy distributions of the surrounding ISM structure into PAH as well as warm and cool dust components with the help of 2.5-5 um spectra. We find that the [CII] emission spatially corresponds to the PAH emission better than to the dust emission, confirming the relative importance of PAHs for photo-electric heating of gas in photo-dissociation regions. A naive interpretation based on our observational results indicates that molecular clouds associated with RCW38 are located both on the side of and behind the cluster.Comment: 10 pages, 7 figures, accepted for publication in A&

    Intelligent Controlling Simulation of Traffic Flow in a Small City Network

    Full text link
    We propose a two dimensional probabilistic cellular automata for the description of traffic flow in a small city network composed of two intersections. The traffic in the network is controlled by a set of traffic lights which can be operated both in fixed-time and a traffic responsive manner. Vehicular dynamics is simulated and the total delay experienced by the traffic is evaluated within specified time intervals. We investigate both decentralized and centralized traffic responsive schemes and in particular discuss the implementation of the {\it green-wave} strategy. Our investigations prove that the network delay strongly depends on the signalisation strategy. We show that in some traffic conditions, the application of the green-wave scheme may destructively lead to the increment of the global delay.Comment: 8 pages, 10 eps figures, Revte
    • …
    corecore