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Abstract

In this paper, we propose convex cone-based frameworks for image-set classification.

Image-set classification aims to classify a set of images, usually obtained from video

frames or multi-view cameras, into a target object. To accurately and stably classify

a set, it is essential to accurately represent structural information of the set. There are

various image features, such as histogram-based features and convolutional neural net-

work features. We should note that most of them have non-negativity and thus can be

effectively represented by a convex cone. This leads us to introduce the convex cone

representation to image-set classification. To establish a convex cone-based frame-

work, we mathematically define multiple angles between two convex cones, and then

use the angles to define the geometric similarity between them. Moreover, to enhance

the framework, we introduce two discriminant spaces. We first propose a discriminant

space that maximizes gaps between cones and minimizes the within-class variance. We

then extend it to a weighted discriminant space by introducing weights on the gaps to

deal with complicated data distribution. In addition, to reduce the computational cost

of the proposed methods, we develop a novel strategy for fast implementation. The

effectiveness of the proposed methods is demonstrated experimentally by using five

databases.
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1. Introduction

In this paper, we propose a method for image-set classification based on convex

cone models, which can exactly represent the geometrical structure of an image set.

For the last decade, image-set based classification methods have gained substantial

attention in various applications of multi-view images or videos, such as 3D object

recognition and motion analysis. The essence of image-set based classification is on

how to effectively and low-costly measure the similarity between two image sets. To

this end, several types of methods using different models have been proposed [1–9].

Among the conventional methods, subspace-based methods have been well known

as effective methods due to the compactness of a subspace model, simple geometrical

relationship of class subspaces, and practical and efficient computation. In this type of

methods, a set of images is compactly modelled by a subspace in a high-dimensional

vector space, where the subspace is generated by applying the principal component

analysis (PCA) to the image set without data centering. After converting each image

set to a subspace, the similarity between two sets to be compared can be calculated

by using the canonical angles between their subspaces [10, 11]. Typical subspace-

based methods include the mutual subspace method (MSM) [1] and its extension, the

constrained mutual subspace method (CMSM) [12].

The validity of the subspace representation is also supported by the evidence based

on physical characteristics. For example, a low-dimensional subspace (with at most

nine dimensions) can represent a set of images of a convex object with Lambertian

reflectance under a fixed camera view and various illumination conditions. Such a

subspace is called the illumination subspace [13–15]. It has been empirically shown

that the subspace representation works effectively, even when the above assumptions

are not strictly satisfied. In fact, many studies have supported the effectiveness of the

subspace representation in various problems [1, 16, 17]. Our representation by using

convex cones is an enhanced extension of the subspace representation.

Various image features, such as LBP, HoG and CNN features, have only non-

negative values. This characteristic induces the additivity of feature vectors [18]. Fur-

thermore, the additivity allows only the linear combination with non-negative coeffi-
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cients of feature vectors. Accordingly, a set of features forms a convex cone instead

of a subspace in a high-dimensional vector space, where a convex cone is mathemat-

ically defined as a subset of a subspace that is closed under the linear combination

with non-negative coefficients. It is well known that a set of front-facing images un-

der various illumination conditions forms a convex cone, referred to as an illumination

cone [13–15]. The illumination cone has an advantage over the illumination subspace

as it has a more accurate representation ability. Several studies have demonstrated the

effectiveness of the convex cone representation compared with that of the subspace rep-

resentation [18–20]. These advantages naturally motivated us to propose a framework,

through replacing a subspace with a convex cone, to model a set of image features with

non-negative values.

To incorporate the convex cone model into the framework of image-set recognition,

we need to consider how to calculate the structural similarity between two convex

cones. To this end, we define multiple angles between two convex cones to capture

exactly the geometrical relationship between them, like the canonical angles between

two subspaces [10, 11]. We then propose a new method for obtaining the angles in

turn from the smallest to the largest by applying the alternating least squares method

(ALS) [21] to the convex cones sequentially. Finally, we define the geometric similarity

between two convex cones based on the obtained angles. We call the classification

method using this similarity the mutual convex cone method (MCM).

Furthermore, to improve the performance of the MCM, we introduce the projec-

tion of convex cones onto a discriminant space D, which minimizes the within-class

variance and enlarges the gaps (between-class variance) between convex cones. The

gaps between convex cones precisely capture the difference component between the

cones, i.e., difference information, such as shape difference, among various objects.

Since such information is essential for classification, the projection onto D enhances

the classification ability of MCM, similarly to that of the projection of class subspaces

onto a generalized difference subspace (GDS) in CMSM [22]. Finally, we classify an

input image set by using the cone similarity between the projected input and class con-

vex cones Ĉin, {Ĉj}, as shown in Fig. 1. We call this method the constrained mutual

convex cone method (CMCM).
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Figure 1: Conceptual diagram of the basic idea of the proposed methods. First, feature vectors are extracted
from an image set. Then, each set of features is represented by a convex cone. The classification is performed
by calculating the similarity based on the angles {✓i} between the convex cones Cin and {Cj}. To enhance
the classification ability of this approach, the projection of the convex cones onto the discriminant space D
or the weighted discriminant space is introduced before calculating the angles.

Then, we further extend the proposed MCM and CMCM, considering more prac-

tical cases. So far, MCM and CMCM assume that an image set of a class can be well

represented by a single convex cone. However, it is not necessarily reasonable in many

practical applications, e.g., in the case that there are multiple videos collected under

different situations for a class. In such cases, a single cone is insufficient to repre-

sent the complicated structure information. To address this issue, we represent a set of

images by multiple convex cones instead of a single convex cone.

Moreover, for the above representation, we redesign how to generate a discrimi-

nant space for CMCM. We re-define the between-class variance (gaps) to extract more

complicated gaps between multiple convex cones. We calculate the gaps for every pair

of convex cones from different classes and then generate a discriminant space from

these gaps. In this process, we also introduce weights on gaps to further enhance the

discriminant ability. The basic idea is that the weight on a gap is set to be larger when

the gap is small. From this strategy, we expect the effect that small gaps between two

cones can be enlarged after the projection onto the discriminant space.

However, the extension method requires high computational cost in compensation

for its high discriminant ability. To alleviate this high computational cost, we introduce

a new strategy for fast implementation. The key idea is to divide the similarity calcu-

lation into two steps, where we first use the subspace-based method and then use the

cone-based method.

In preparation for this fast implementation strategy, we generate the subspaces con-
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taining each convex cone by applying the Gram-Schmidt orthogonalization to the basis

of the cone in advance. Then, in the first step, we calculate the similarities between

the input and reference subspaces corresponding to their original cones, and select sev-

eral neighbourhood cones of the input cone by using the similarities. The calculation

using subspaces is much faster than that directly using cones. In the second step, we

precisely calculate the similarities between the input cone and the selected neighbour-

hood cones by the proposed method. We name the CMCM with this selection process

“fast CMCM”. As shown later, the fast CMCM can achieve about ten times speedup in

comparison with the original method.

The main contributions of this paper are summarized as follows.

1. To enhance the subspace-based methods, we introduce a convex cone representa-

tion to accurately and compactly represent a set of features with the non-negative

constraint as typified by CNN features.

2. We introduce two novel mechanisms in our cone-based classification: a) mul-

tiple angles between two convex cones to measure the similarity between the

cones; b) projection of convex cones onto a discriminant space to enlarge the

class separability.

3. To enhance the classification performance of the cone-based framework, we pro-

pose a weighted discriminant space to further enlarge the class separability by

reflecting the local relationship between multiple convex cones of a class.

4. To reduce the computational cost induced by the convex cone representation,

we develop a fast implementation of CMCM by switching the cone-based and

subspace-based methods.

5. With the valid combination of the contributions 2) and 3), we build three types

of novel image-set based classification methods, called MCM, CMCM and ex-

tended CMCM, based on the convex cone representation, the discriminant space,

and the multiple cone representation.

Some preliminary ideas have appeared in our earlier work [23]. However, the

present paper has been significantly enhanced in the following aspects: 1) this pa-

per developed two new technical extensions, as described in our contributions 3 and 4
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as mentioned above, which led to remarkable improvement in the classification perfor-

mance and reduction in computational cost; 2) this paper provided much more detailed

formulation and in-depth analysis of the proposed methods from two pivotal perspec-

tives: the effectiveness of using multiple angles for the classification performance and

the essence of the gaps among cones; and 3) this paper also redesigned all the experi-

ments on object recognition and face recognition, to extensively verify the effectiveness

of the proposed methods.

2. Related work

This section first describes the algorithms for two standard image-set classification

methods, MSM and CMSM. Then, we provide an overview of the concept of convex

cones and the generation of a convex cone by non-negative matrix factorization.

2.1. Mutual subspace method based on canonical angles

Mutual subspace method (MSM) [1] is a classification method of an image set

based on its subspace representation. The essence of MSM is to use the structural

similarity between subspaces as the similarity between input and reference image sets.

The subspace similarity is defined by the canonical angles between two subspaces to

precisely compare the whole structures of them.

Let S1 and S2 be N1 and N2( N1)-dimensional subspaces in a d-dimensional

vector space, respectively. The canonical angles {0  ✓1, · · · , ✓N2  ⇡
2 } between S1

and S2 are recursively defined as follows [10, 11]:

cos ✓i = max
u2S1

max
v2S2

uTv = uT
i vi, (1)

s.t. kuik2 = kvik2 = 1,uT
i uj = vT

i vj = 0, i 6= j,

where ✓i is the i-th canonical angle between S1 and S2, and ✓i is formed by two canon-

ical vectors ui and vi. The j-th canonical angle ✓j is the smallest angle in the direction

orthogonal to the canonical angles {✓k}j�1
k=1.

The canonical angles can be calculated from the orthogonal projection matrices

onto subspaces S1 and S2. Let {�i}N1
i=1 be orthonormal basis vectors of S1 and { i}N2

i=1
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be orthonormal basis vectors of S2. The projection matrices P1 and P2 are calculated

as
PN1

i=1 �i�i
T and

PN2

i=1  i i
T, respectively; and cos2 ✓i can be obtained as the i-th

largest eigenvalue �i of P1P2 (or P2P1) [10, 11].

The structural similarity between two subspaces S1 and S2 is defined by using the

canonical angles, as follows:

sim(S1,S2) =
1

N2

N2X

i=1

cos2 ✓i. (2)

In MSM, an input subspace Sin is classified by comparison with class subspaces

{Sc}Cc=1 by measuring their similarity using this similarity.

2.2. Constrained MSM

MSM was extended to Constrained MSM (CMSM) [12, 22] by introducing projec-

tion of subspaces onto a constraint space. As a constraint space, generalized difference

subspace (GDS) [22] is typically used. GDS consists of only difference components

among subspaces {Sc}Cc=1. Thus, the projection of class subspaces onto GDS can

enlarge the separability among the class subspaces, substantially enhancing the classi-

fication performance of MSM [22].

2.3. Convex cone representation

In this subsection, we describe the definition of a convex cone and the projection

of a vector onto a convex cone. A convex cone C in the d-dimensional vector space Rd

is defined by a finite number of generators (basis vectors) {bi 2 Rd}ri=1:

C = {a|a =
rX

i=1

wibi, wi � 0}. (3)

As indicated by (3), a convex cone has non-negative constraints on the combination

coefficients, unlike a subspace.

Given a set of feature vectors {fi 2 Rd}Ni=1. We obtain the basis vectors {bi}ri=1 of

a convex cone by non-negative matrix factorization (NMF) [24, 25] to suppress noise

and remove redundant bases of a cone model.
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Let F = [f1f2 . . . fN ] 2 Rd⇥N and B = [b1b2 . . .br] 2 Rd⇥r(<N). NMF gener-

ates the basis vectors B by solving the following optimization problem:

arg min
B,W

kF�BWkF s.t. (B)i,j , (W)i,j � 0, (4)

where k · kF denotes the Frobenius norm, and the number of basis vectors r is a hy-

perparameter. We use the alternating non-negativity-constrained least squares-based

method [25] to solve this problem.

Although the basis vectors can be computed by NMF, the projection of a vector x

onto the convex cone is slightly complicated by the non-negative constraints. In [18],

the projection is defined with the non-negative least squares (NNLS) method [26] as

follows:

arg min
{wi}

kx�
rX

i=1

wibik2 s.t. wi � 0. (5)

The projected vector x̂ is obtained as x̂ =
Pr

i=1 wibi.

In the end, the angle ✓ between a vector x and the convex cone can be calculated

as follows:

cos ✓ =
x̂Tx

kx̂k2kxk2
. (6)

3. Mutual convex cone method

In this section, we describe the algorithm of MCM, after establishing the definition

of geometric similarity between two convex cones.

3.1. Basic idea

The canonical angles between subspaces can be analytically calculated from the

projection matrices in closed form. In contrast, the calculation of the angles between

cones is not trivial, as the projection onto a cone includes the process of NNLS (Eq. 5).

Hence, we propose a new method for obtaining the angles in turn from the smallest to

the largest by applying the alternating least squares method (ALS) [21] to the convex

cones sequentially. The key idea here is to project convex cones onto the orthonormal

complement space of the subspace spanned by two vectors forming the angle obtained
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Algorithm 1: Algorithm to search for the pair p1 and q1.
Input: Basis vectors {b1

i }, {b2
i } of two convex cones, C1 and C2.

Let Pj(y) be the projection operator of a vector y onto a convex cone Cj ,
explained in Section 2.3.

1. Randomly initialize y 2 Rd.
2. p1 = P1(y)/kP1(y)k2.
3. q1 = P2(y)/kP2(y)k2.
4. ŷ = (p1 + q1)/2.
5. If kŷ � yk2 is sufficiently small, the procedure is completed. Otherwise,

return to step 2 after setting y = ŷ.
return cos2 ✓1 = ( pT

1 q1

kp1k2kq1k2
)2.

in the previous step and then to apply ALS to the projected cones again. This sequential

projection works effectively like the orthogonal decomposition of a convex cone in high

dimensional vector space.

The following subsection describes the detailed definition of the multiple angles

and the similarity between convex cones.

3.2. Multiple angles and geometric similarity between two convex cones

To define the geometric similarity between two convex cones, we consider how

to define multiple angles between two convex cones like canonical angles. Let two

convex cones C1, C2 be formed by basis vectors {b1
i 2 Rd}N1

i=1 and {b2
i 2 Rd}N2

i=1,

respectively. Assume that N1  N2 for convenience. As we need to consider the

non-negative constraint, the angles between two convex cones cannot be obtained ana-

lytically, unlike the canonical angles. Instead, we find two vectors, p 2 C1 and q 2 C2,

which form the smallest angles between the convex cones. In this way, we sequentially

define multiple angles from the smallest to the largest, in order.

First, we search for a pair of d-dimensional vectors p1 2 C1 and q1 2 C2, which

have the maximum correlation, by solving the following optimization problem:

cos ✓1 = max
p12C1

max
q12C2

pT
1 q1, s.t. kp1k2 = kq1k2 = 1. (7)

This problem can be solved by the alternating least squares method (ALS) [21]. Thus,

the first angle ✓1 can be obtained as the angle formed by p1 and q1. The algorithm of
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Figure 2: Conceptual diagram of the procedure searching for pairs of vectors {pi,qi}. The first pair of p1

and q1 can be found by the alternating least squares method. The second pair of p2 and q2 is obtained by
searching the orthogonal complement space S? of S = Span{p1,q1} [23].

the ALS is summarized in Algorithm 1.

For the second angle ✓2, we find a pair of vectors p2 and q2 with the maximum

correlation, but with the minimum correlation with p1 and q1. Such a pair can be

found by applying ALS to the projected convex cones C1 and C2 on the orthogonal

complement space S? of the subspace S spanned by the vectors p1 and q1 as shown

in Fig. 2. Then ✓2 is formed by p2 and q2. In this way, we can obtain all of the pairs

of vectors pi,qi forming the i-th angle ✓i, i = 1, . . . , N1.

With the resulting angles {✓i}N1
i=1, we define the geometric similarity sim between

two convex cones C1 and C2 as

sim(C1, C2) =
1

N1

N1X

i=1

cos2 ✓i. (8)

3.3. Algorithm of mutual convex cone method

The mutual convex cone method (MCM) classifies an input convex cone, using the

similarities defined by Eq. (8) between the input and reference convex cones. MCM

consists of two phases, a training phase and a recognition phase.

Given C class sets with L images {xc
i}Li=1.

Training Phase

1. Feature vectors {f ci } are extracted from the images {xc
i} of class c.

2. The basis vectors of class-c convex cone, {bc
j}, are generated by applying NMF

to the set of feature vectors {f ci }.
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3. {bc
j} are recorded as the class convex cone of class c.

4. The above process is conducted for all C classes.

Recognition Phase

1. A set of images {xin
i } is input.

2. Feature vectors {f ini } are extracted from images {xin
i }.

3. The basis vectors of the input convex cone, {bin
j }, are generated by applying

NMF to the input set of feature vectors {f ini }.
4. The input image set {xin

i } is classified based on the similarity (Eq. (8)) between
the input convex cone {bin

j } and the class-c convex cone {bc
j}.

4. Constrained mutual convex cone method

In this section, we extend MCM by introducing the projection onto a discriminant

space. We first describe the basic idea of the introduction of a discriminant space, and

then define the discriminant space based on the gaps among convex cones. After that,

we detail the algorithm of the extended MCM.

4.1. Basic idea

As convex cones capture essential information of each image set, the gaps between

them precisely capture the difference components between corresponding objects, such

as the shape difference. The performance of MCM can be enhanced by extracting the

gap information, since such information is essential for classification. To this end, we

design a discriminant space based on the gaps.

4.2. Generation of discriminant space

To enhance the performance of MCM, we introduce a discriminant space D, which

enlarge the gaps (the between-class variance Sb) and minimizes the within-class vari-

ance Sw for the convex cones projected on D, similarly to the Fisher discriminant

analysis (FDA). In our method, the within-class variance Sw is calculated from basis

vectors of convex cones, and the between-class variance Sb is calculated from gaps

among convex cones for effectively utilizing the information formed by convex cones.

We define these gaps as follows. Let Cc be the c-th class convex cone with Nc basis

vectors {bc
i}

Nc
i=1, Pc be the projection operation of a vector onto Cc defined by Eq. (5),
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Algorithm 2: Procedure to search for a set of first vectors {pc
1}Cc=1

Input: Basis vectors {bc
i} of convex cones {Cc}c

Let Pj(y) be the projection operator of a vector y onto a convex cone Cj .
1. Randomly initialize y1.
2. Project y1 onto each convex cone, and then normalize the projection as
pc
1 = Pc(y1)/kPc(y1)k2.

3. ŷ1 =
PC

c=1 p
c
1/C.

4. If ky1 � ŷ1k2 is sufficiently small, the procedure is completed. Otherwise,
return to step 2 after setting y1 = ŷ1.

return {Pc(y)}c

and C be the number of the classes. We consider C vectors {pc
1}, c = 1, 2, . . . , C,

such that the sum of the correlation
P

i 6=j (p
i
1)

Tpj
1/(kpi

1k2kp
j
1k2) is maximum. Such

vectors can be obtained by using the concept of generalized canonical correlation anal-

ysis [27, 28]. The detailed procedure is shown in Algorithm 2, which is almost the

same as the original algorithm, except that the non-negative least squares (LS) method

is used instead of the standard LS method.

Next, we search for a set of second vectors {pc
2} with the maximum sum of the

correlations under the constraint that they have the minimum correlation with the pre-

viously found {pc
1}. The second vectors {pc

2} can be obtained by applying the above

procedure to the convex cones projected onto the orthogonal complement space of the

vector y1. In the same way, a set of the j-th vectors {pc
j} can be computed by apply-

ing the same procedure to the convex cones projected onto the orthogonal complement

space of {yk}j�1
k=1. In this way, we finally obtain the sets of {pc

j}. With the sets of

{pc
j}, we define a difference vector dc1c2

j as

dc1c2
j = pc1

j � pc2
j . (9)

Considering that each difference vector represents the gap between the two convex

cones, we use these vectors to define Sb as

Sb =

NgX

j=1

C�1X

c1=1

CX

c2=c1+1

dc1c2
j (dc1c2

j )T, (10)

12



where Ng is the minimum number of basis vectors of class convex cones, i.e., min({Nc}).

Next, we define the within-class variance Sw by using the basis vectors {bc
i} for

all classes of convex cones:

Sw =
CX

c=1

NcX

i=1

(bc
i � µc)(b

c
i � µc)

T, (11)

where µc =
PNc

i=1 b
c
i/Nc. Finally, the Nd-dimensional discriminant space D is spanned

by Nd eigenvectors {�i}Nd
i=1 corresponding to the Nd largest eigenvalues {�i}Nd

i=1 of

the following eigenvalue problem:

Sb�i = �iSw�i. (12)

4.3. Algorithm of constrained mutual convex cone method

We construct the constrained MCM (CMCM) by incorporating the projection onto

the discriminant space D into the MCM. CMCM consists of a training phase and a

recognition phase. In the following, we explain each phase for the case in which C

classes have L images {xc
i}Li=1 each and the discriminant space D is utilized.

Training Phase

1. Feature vectors {f ci } are extracted from images {xc
i}.

2. The basis vectors of the c-th class convex cone, {bc
j}, are generated by applying

NMF to each class set of feature vectors.
3. Difference vectors {dc1c2

j } are computed according to the method explained in
section 4.2.

4. The discriminant space D is generated by solving Eq. (12) with {bc
j} and {dc1c2

j }.
5. The basis vectors {bc

j} are projected onto D.
6. A convex cone formed by a set of the projected basis vectors {b̂c

j}j is registered
as the class convex cones of class c.

Recognition Phase

1. A set of images {xin
i } is input.

2. Feature vectors {f ini } are extracted from images {xin
i }.

3. The basis vectors of a convex cone, {bin
j }, are generated by applying NMF to

the set of feature vectors.
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4. The basis vectors {bin
j } are projected onto the discriminant space D and then

the lengths of the projected basis vectors are normalized to 1. The normalized
projections are represented by {b̂in

j }.
5. The input set {xin

i } is classified based on the similarity (Eq. (8)) between the
input convex cone {b̂in

j } and each class convex cone {b̂c
j}.

5. Extension of constrained mutual convex cone method

In this section, we further enhance the CMCM by incorporating the information

of the fine local structure between different classes into the generation of an enhanced

discriminant space, considering the case that an image set of a class has the complex

structure. We further improve the ability of the enhanced discriminant space by intro-

ducing weights on gaps. Finally, we propose a fast implementation of the enhanced

CMCM.

5.1. Basic idea

In practical applications, a class distribution are often complicated, for example, in

the case that an image set of a class contains multiple videos collected under different

situations. In these cases, it is reasonable to represent each class by multiple cones in-

stead of a single cone. In our method using multiple reference cones, the classification

of an input cone Cin is performed by the nearest neighbor classifier in a very similar

procedure to the original CMCM using a single convex cone, except that this enhanced

CMCM uses a newly designed discriminant space.

In the following sections, we redesign the method for generating an enhanced dis-

criminant space in response to the multiple convex cone representation of a class. Then,

we introduce weights on gaps to incorporate local structure into the generation of an

enhanced discriminant space.

5.2. CMCM with enhanced discriminant space

Consider nc training image sets {Xc
i}n

c

i=1 for the c-th class, where each image set

Xc
i has nc

i images {xc
i,j}

nc
i

j=1. Let Fc
i 2 Rd⇥nc

i be a matrix whose j-th column vector is

a feature vector such as pixel intensities and CNN feature extracted from the image xc
i,j ,
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and {bc
i,j 2 Rd}N

c
i

j=1 be the basis vectors of each reference convex cone Cc
i generated

from each feature set Fc
i .

We first reformulate the between-class variance Sb by using multiple gaps (differ-

ence vectors) {dik,hl
j } between every pair of convex cones Ck

i and Cl
h from different

classes as follows:

S0
b =

NgX

j=1

C�1X

k=1

CX

l=k+1

nkX

i=1

nlX

h=1

dik,hl
j (dik,hl

j )T, (13)

where Ng is the minimum number of basis vectors of references convex cones, min({N c
i }),

and {dik,hl
j } are the difference vectors between vector pairs {pik

j ,phl
j } of two convex

cones Ck
i and Cl

h, which are obtained by applying the method described in Sec. 4.2, and

C is the number of classes.

Subsequently, we reformulate the within-class variance Sw as follows:

S0
w =

CX

c=1

ncX

i=1

Nc
iX

j=1

(bc
i,j � µc

i )(b
c
i,j � µc

i )
T, (14)

where µc
i is the mean vector of the basis vectors {bc

i,j} of the i-th reference convex

cone of the c-th class, {Cc
i }, which is calculated by

PNc
i

j=1 b
c
i,j/N

c
i .

We obtain an enhanced discriminant space De as the subspace spanned by Nd

eigenvectors corresponding to the Nd largest eigenvalues of the following eigenvalue

problem:

S0
b�i = �iS

0
w�i. (15)

With the multiple cone representation, the projection of cones onto De can more accu-

rately and finely maximize between-class variance S0
b while minimizing within-class

variance S0
w, in comparison with a naive discriminant space generated based on a sin-

gle cone representation.

5.3. Enhanced discriminant space with weights

So far, all the gaps (difference vectors) are treated with the same contribution to

generating the enhanced discriminant space De. However, the smallest gaps between
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convex cones are more important for discrimination than the largest gaps. In fact,

several studies reported the validity of this idea [29–31]. Motivated by these studies,

we expect that adding different weights can ensure that the smallest gaps between two

cones are selectively enlarged after the projection onto the discriminant space, which

leads to a better discriminative ability. Concretely, we enhance the discriminant space

by introducing the weighted between-class variance with weights {wikhl} as follows:

S00
b =

NgX

j=1

C�1X

k=1

CX

l=k+1

nkX

i=1

nlX

h=1

wikhldik,hl
j (dik,hl

j )T, (16)

where the weights {wikhl} are defined as

wikhl =

NgX

j=1

((pik
j )Tphl

j )2/Ng. (17)

This formulation means that the value of wikhl increases as the corresponding gap be-

tween convex cones becomes smaller. The enhanced discriminant space with weights

maximizes more effectively the between-class variance, while minimizing the within-

class variance. We can obtain the enhanced discriminant space as the subspace spanned

by Nd eigenvectors corresponding to the Nd largest eigenvalues of the following eigen-

value problem:

S00
b�i = �iS

0
w�i. (18)

In the following, we refer this further enhanced discriminant space as the weighted

discriminant space Dew.

5.4. Validity of enhanced discriminant space

To see the high discriminative ability of the enhanced discriminant spaces, we vi-

sualize the projections of convex cones onto D, De, and Dew as 2D maps by using

multi-dimensional scaling (MDS) [32]. For the visualization, we synthesized ten cones

{C1
i }10i=1 for class-1 and five cones {C2

i }5i=1 for class-2. Each convex cone Cc
i is spanned

by three 100-dimensional basis vectors {bc
i,j 2 R100}3j=1. Figure 3(a) shows the 2D

visualization map of the synthesized cones without any projection.
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(a) Original data. (b) Distribution on the discriminant
space D generated from two class
convex cones.

(c) Distribution on De. (d) Distribution on Dew .

Figure 3: Results of the projections onto discriminant spaces D,De, and Dew . Each plot is generated by
MDS. The shapes of each point indicate the corresponding class. The dotted lines are plotted between basis
vectors of a cone.

Figs. 3 (b), (c) and (d) show the maps of the cones projected onto D, De and Dew,

respectively. Through the comparison between the two maps in (b) and (c), we can see

that the cones projected onto De are better separated than the cones projected onto D.

This indicates a clear advantage of the enhanced discriminant space De using multiple

cones for each class over the naive discriminant space D using a single cone for each

class.

Next, we evaluate the validity of introducing weights to the enhanced discriminant

space Dew. We cannot see a large visual difference between the two projection maps

of (c) and (d), since a 2D projection map cannot capture completely high-dimensional

structures in the 100-dimensional vector space. However, by comparing them carefully,

we can observe that there is no overlap in (d), while there are partial overlaps in (c).

To further verify the advantage of Dew over De quantitatively, we calculated the

class separability of the projected cones in the original 100-dimensional vector space.
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The class separability is defined as tr(Sb
0)/tr(S0

w). This index was used for both De

and Dew for fair comparison. The class separabilities of the projections on De and Dew

are 259.4 and 910.6, respectively. This large difference supports clearly the validity of

the introduction of weights to the enhanced discriminant space.

5.5. Fast implementation of CMCM

CMCM is much more computationally costly than the subspace-based methods,

MSM and CMSM. This is because the calculation of similarity between cones needs

heavy computation due to ALS. Moreover, the cost of the extended CMCM with N

reference cones is N times higher than that of the original CMCM.

To alleviate this high cost, we divide the similarity calculation into two steps. The

first step is based on the subspace similarity in Eq.(2) and the second step is based on

the cone similarity in Eq.(8).

We generate in advance the subspaces containing each cone by applying the Gram-

Schmidt orthogonalization to the bases of the cone. Then, in the first step, we generate

the input subspace from an input cone and calculate the similarities between the input

and reference subspaces. After that, we select several neighborhood reference sub-

spaces according to the subspace similarities obtained above. In the second step, we

calculate the similarities of the input cone and the reference cones, which correspond

to the reference subspaces selected above. Finally, the input cone is classified into the

class with the maximum cone similarity. This two-step process can reduce the compu-

tational cost largely, while maintaining the high discriminative ability of the extended

CMCM, as clearly shown in experiments in sec.6.

6. Evaluation experiments

In this section, we conduct four experiments to evaluate the effectiveness of the

proposed methods. In the first two experiments, we mainly demonstrate the effective-

ness of the convex cone representation by comparing the performances of the proposed

methods (MCM and the CMCM with D) with the fundamental subspace-based meth-

ods (MSM and CMSM). More concretely, the first experiment verifies the effectiveness
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of using multiple angles between convex cones to measure the structural similarity be-

tween them, using the multi-view objects dataset [33]. The second experiment reveals

how efficiently a convex cone captures essential information of an image set for clas-

sification by observing the transitions of performances while varying the number of

training data, using the multi-view hand shape dataset [34].

The third experiment evaluates the validity of the convex cone model and the rep-

resentation ability of multiple convex cone models for image-set classification on the

YouTube Celebrities dataset [35], using four types of typical image features.

The fourth experiment thoroughly evaluates the classification performance of the

proposed methods using three datasets: 1) YouTube Celebrities (YTC) [35], 2) RGBD

Object [36], and 3) YouTube Faces (YTF) [37].

6.1. Effectiveness of using multiple angles

In this experiment, we verify the effectiveness of using multiple angles for calculat-

ing the structural similarity between convex cones, through a classification experiment

using the ETH-80 dataset [33].

6.1.1. Experimental protocol

The ETH-80 dataset consists of object images in eight different classes. Each class

has ten types of objects. Thus, this dataset consists of images taken from 80 objects (= 8

classes ⇥ 10 objects). As each object is captured from 41 viewpoints, the total number

of images is 3280 (= 80 objects ⇥ 41 viewpoints). One object randomly sampled

from each class set was used for training, and the remaining nine objects were used

for testing. As an input image set, we used 41 multi-view images for each object.

Thus, we have eight image sets for training and 72 (= 8 classes ⇥ 9 objects) image

sets for testing. We used images scaled to 32 ⇥ 32 pixels and converted to grayscale.

Vectorized features of the grayscale images were used as input, i.e. the dimension of

the feature vector is 1024.

We evaluated the classification performance of the mutual convex cone method

(MCM) and the constrained MCM (CMCM) with the discriminant space D, while

varying the number of angles used for calculating the similarity. As baselines, the mu-
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tual subspace method (MSM) and the constrained MSM (CMSM) were also evaluated.

Dimensions of reference subspaces and convex cones were set to 20, and dimensions

of input subspaces and convex cones were set to 10.

6.1.2. Results and discussion

Figure 4: Results of classification experiment. The vertical axis is the accuracy, and the horizontal axis is the
number of angles used for calculating the similarity.

Figure 4 shows the accuracy changes of the different methods against the number

of angles. The horizontal axis denotes the number of angles used for calculating the

similarity. We can confirm that the accuracy of MCM and CMCM increases, as the

number of angles increases. This result shows clearly the importance of comparing the

whole structures of convex cones by using multiple angles rather than using only the

minimum angle for accurate classification.

In the case of using one or two angles, the accuracy of CMCM is lower than CMSM.

However, with an increase in the number of angles, CMCM outperforms the methods

MSM and CMSM which are based on the subspace representation. This supports the

effectiveness of the convex cone representation and indicates that using multiple angles

is essential to compare the structures of two convex cones.

6.2. Representation ability of a convex cone

This experiment aims to reveal how efficiently a convex cone captures essential

structural information of an image set. To this end, we evaluate our methods while

changing the number of training data, using the multi-view hand shape dataset [34].

As detailed later, we show the results from the soft voting with a CNN, in addition
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to our methods and MSM/CMSM, to verify the importance of considering structural

information of image sets.

6.2.1. Experimental protocol

Figure 5: Sample images of the multi-view hand shape dataset used in the experiments. Each row shows a
hand shape from various viewpoints.

The multi-view hand shape dataset [34] consists of 30 classes of hand shapes. Each

class data was collected from 100 subjects at a speed of 1 fps for 4 seconds using

a multi-camera system equipped with seven synchronized cameras at intervals of 10

degrees. During data collection, the subjects were asked to rotate their hands at a

constant speed to increase the number of viewpoints. Figure 5 shows sample images in

the dataset. The total number of images collected was 84000 (= 30 classes⇥4 frames⇥7

cameras ⇥100 subjects).

We randomly divided the subjects into two sets. One set was used for training, and

the other was used for testing. To evaluate the efficiency of convex cone representation,

we conducted the experiment by setting the numbers of subjects used for training to 1,

2, 3, 4, 5, 10, and 15. Hence, the number of training images was 840N (= 30 classes⇥7

cameras⇥4 frames⇥N subjects). We set the number of subjects used for testing to 50.

We treated 28 images of a subject as an input image set. Thus, the total number of

convex cones for testing was 1500 (=30 classes⇥50 subjects).

In this experiment, we used CNN features. To extract effective CNN features, we

fine-tuned the ResNet-50 [38] pre-trained on ImageNet [39]. To this end, we slightly

modified the architecture of the ResNet-50 for our experimental setting. First, we

replaced the final layer of the ResNet-50 with a 1024-way fully connected (FC) layer

with the ReLU function. Next, we added a class number -way FC layer with softmax

behind the replaced FC layer. Then, we trained the modified ResNet using the training

images.
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We extracted a CNN feature of each image from the replaced 1024-way FC layer.

Thus, the dimensionality d of a CNN feature vector was 1024.

Besides, we utilized this fine-tuned network as a baseline of the methods, which do

not consider the structure of an image set, with the following procedure; we classified

an input image set based on the average value of the output conviction degrees class

from the last FC layer with softmax. In the following, we call this method as “softmax”.

For subspace and cone-based methods, the parameters were tuned by grid search on

the training set with the following ranges: the dimension of class subspaces and convex

cones varied from 10 to 50 in increments of 10; the dimension of input subspace and

convex cone varied from 5 to 20 in increments of 5. For CMCM, the dimensions of the

discriminant space D was set to the matrix rank of the between-class variance Sb. For

CMSM, the maximum dimension dmax of GDS is (the dimension of class subspace)⇥

(the number of classes). The dimension of GDS was tuned by the same strategy while

varying the reduction dimension dred with the range from 5 to 30 in increments of 5.

The dimension of GDS is set to dmax � dred. This strategy was also conducted on the

experiments in the later subsections.

6.2.2. Results and discussion

Table 1 shows the accuracies versus the number N of training subjects. The overall

performances of the subspace and convex cone methods achieved competitive results

compared with that of softmax. In particular, the improvements are significant when

the number of training subjects N is small. From this result, we can see the importance

of considering structural information of image sets.

Table 1: Change in the accuracies (%) against the number of training subjects.
N 1 2 3 4 5 10 15
softmax 36.07 71.41 83.87 86.60 91.60 95.73 96.53
MSM 62.27 73.47 85.27 87.60 91.13 95.27 96.20
CMSM 65.87 74.73 87.40 91.00 92.87 95.73 96.27
MCM 63.07 74.60 85.67 88.27 92.07 95.40 96.67
CMCM 67.87 75.33 87.47 91.33 93.53 96.27 97.00

Our methods outperformed the subspace-based methods, MSM and CMSM. This
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supports the effectiveness of our core ideas: the utilizing of convex cone representation

and the cone similarity with multiple angles. Besides, the result suggests that a convex

cone can extract meaningful information of image-sets efficiently and stably, even if

the number of training data is small.

Moreover, CMCM showed superior performance to MCM in all cases. This im-

provement indicates the effectiveness of the projection onto D, which is designed to

extract discriminative features based on differences among the cones. This insight also

means the efficient representation ability of a convex cone model, since the difference

among them works well.

6.3. Representation ability of multiple convex cones

In this subsection, we evaluate the representation ability of multiple convex cones in

addition to a single convex cone, on the video-based face recognition dataset, YouTube

Celebrities (YTC) [35], using four representative image features: Local Binary Pattern

(LBP) [40], Histogram of Gradient (HoG) [41] and two types of CNN features, which

are extracted from ResNets trained on ImageNet [39] and VGGFace2 [42] datasets,

respectively. We show the classification performances of our methods, including the

CMCM with Dew and its fast implementation. For convenience, we use wCMCM to

denote the CMCM with Dew.

6.3.1. Experimental protocol

The YTC dataset contains 1910 videos of 47 people. We used a set of face images

extracted from a video by the Incremental Learning Tracker (ILT) [43], as an image set.

Six videos per each person were randomly selected as training data, and nine videos

per each person were randomly selected as test data. We repeated the evaluation five

times with different random selections.

For extracting LBP and HoG features, all the extracted face images were scaled

to 30 ⇥ 30 pixels and converted to grayscale. For extracting CNN features, all face

images were scaled to 224 ⇥ 224 pixels and then inputted to the networks.

The parameters were tuned by the grid search algorithm on the training set, with

the ranges shown in the left column of Table 2. The dimensions of the discriminant
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Table 2: Parameter ranges used in the grid search algorithm. dis and dcs are the dimensions of input
and class subspaces, respectively. Nc and N in are the number of basis vectors of input and class cones,
respectively. dred is a parameter for the dimension of GDS, and Nc

i is the number of basis vectors of each
cone used for wCMCM. Each element [x–y/z] in the table means that the corresponding parameter varied
from x to y in increments of z.

YTC RGBD YTF
dis,N in [3–15/3] [4–20/4] [3–15/3]
dcs,N c [6–30/6] [8–40/8] [6–30/6]
dred [3–15/3] [4–20/4] [3–15/3]
N c

i [3–15/3] [4–20/4] [3–15/3]

space D and the weighted discriminant space Dew were set to the matrix rank of the

between-class variance Sb and S00
b, respectively. Besides, for the fast wCMCM, the

number of nearest convex cones to be selected by subspace similarities is set to 5.

Table 3: Experimental results (recognition rate (%), standard deviation) for the YTC dataset.

LBP HoG ImageNet VGG face2
#Clusters[min,max/mode] [1,3/2] [1,5/2] [1,3/2] [1,3/1]
MSM 32.91±1.29 60.90±1.57 55.51±2.04 89.69±0.96
CMSM 48.75±3.26 72.39±1.76 71.02±1.50 91.49±1.00

MCM 37.40±2.81 62.55±1.84 56.12±1.71 90.54±1.16
CMCM 53.33±2.26 72.86±1.92 71.39±1.92 92.34±1.00
wCMCM 69.27±2.17 77.21±2.52 81.47±1.32 92.96±0.72

fast wCMCM 69.08±2.18 76.97±2.87 81.42±1.28 92.91±1.16

6.3.2. Results and discussion

Table 3 shows the classification results of the baselines and the proposed methods

using the four kinds of features. The experimental results support the effectiveness

of our main ideas as well as the previous two experiments since MCM and CMCM

showed competitive results compared with the baselines regardless of the features we

used.

Furthermore, the performance of CMCM increased by introducing multiple convex

cones and the weighted discriminant space Dew in wCMCM. This further enhancement

shows that 1) the cones have superior representation ability, and 2) the weights work

effectively to obtain local fine structural information between cones of different classes
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as we expected. Moreover, we notice that the fast version of wCMCM achieved almost

the same recognition rate as the original wCMCM, while speeding up more than ten

times compared with the original wCMCM as shown in Table 4. This result concludes

that we can compare the similarity between a pair of cones, which are faraway to each

other, by using the subspace similarity instead of the cone similarity.

Although wCMCM significantly outperforms CMCM in all features, amounts of

improvements are different. To analyze this difference, we automatically estimated the

number of clusters in each class by applying DBSCAN clustering [44]. The second

row of Table 3 shows the minimum, maximum, and mode numbers of clusters. It can

be seen that the more clusters there are in a class on average, the more significantly

wCMCM improves the classification performance. This indicates that we can effi-

ciently represent the complex structure of each class by using multiple convex cones

and extract meaningful information for classification by using the weighted differences

between them.

Table 4: Average classification times (millisecond). The numbers of angles for the similarity are 10. This
experiment is conducted by Matlab 2018b on Intel CPU i7-7700.

wCMCM fast wCMCM
507.2 30.0

6.4. Comparison of classification performance with conventional methods

In this subsection, we thoroughly evaluate the classification performance of the

proposed methods using three public datasets, YTC, RGBD and YTF. As comparison

methods, in addition to the baselines, we show the results of the various fundamental

and recent subspace-based methods (DCC [45], GDA [16], GGDA [29], MMD [2],

PML [17], RMML-GM [46]), as references. In particular, PML and RMML-GM have

been known as powerful classification methods for image-set based recognition. They

learn a transformation matrix of subspaces by solving an optimization problem on a

Grassmann manifold like Fisher discriminant analysis. Besides, we show the results of

other types of methods: covariance-based methods (LEML [47], RMML-SPD [46]), an

affine hull-based method (AHISD [4]) and a sparse-representation method (SANP [48]).
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In the following, details of each dataset and experimental protocols are described. After

that, experiment results are shown.

6.4.1. Datasets and experimental protocols

The RGBD Object dataset [36] consists of object images in 51 different classes.

There are 3 to 14 objects in each class, and each object is captured from over 200 view-

points. As an image set, we used a set of multi-view images of each object. The half

image sets per each class were randomly selected as training data, and the remaining

image sets were used as test data. We repeated the evaluation five times with different

random selections. For this dataset, we used CNN features extracted from the ResNet-

18 trained on ImageNet [39].

The YouTube Faces (YTF) database [37] contains 3425 videos of 1595 people.

We cropped face regions with the annotated data [37] and used the cropped face images

of each video as an image set. As we removed the classes with only one or two videos,

the number of classes used for this experiment is 226. As with the experiment for the

RGBD dataset, the image sets of each class were randomly split in half into training

and test data. We repeated the evaluation five times with different random splits.

In addition to the above two datasets, we show the additional results of the conven-

tional methods on YTC with the same setting in the previous experiment.

For the YTC and YTF datasets, we used CNN features extracted from the ResNet-

50 trained on the VGGFace2 dataset [42].

As with the previous experiment, the parameters were tuned by the grid search

algorithm on the training set, with the ranges shown in Table 2. Besides, we carefully

selected the parameters of the other reference methods by the grid search algorithm

based on the suggested ranges in each paper.

6.4.2. Results and discussion

Table 5 shows the classification results of the proposed methods and various con-

ventional methods. The proposed methods showed consistent results with the previ-

ous experiments for all datasets, i.e., the results support the effectiveness of our key

ideas: the convex cone representation, the cone similarity with multiple angles, and the
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Table 5: Experimental results (recognition rate (%), standard deviation) for the three public datasets.

YTC RGBD YTF

Conventional methods

AHISD [4] 90.02±1.17 80.14±1.73 88.99±0.44
SANP [48] 89.97±1.08 79.28±2.85 70.09±1.86
LEML [47] 90.83±2.00 88.06±3.12 78.68±0.42
RMML-SPD [46] 89.93±1.40 88.20±3.58 74.76±0.65
DCC [45] 92.34±0.81 89.78±2.12 91.63±0.93
GDA [16] 90.36±1.55 88.06±1.55 81.19±2.88
GGDA [29] 92.48±1.45 88.78±0.64 81.94±2.46
MMD [2] 90.30±1.18 82.45±2.72 86.39±1.37
PML [17] 91.25±0.10 90.22±0.03 89.60±0.06
RMML-GM [46] 91.30±0.80 90.93±1.48 89.74±0.70

Base lines MSM 89.69±0.96 89.78±1.06 89.96±0.53
CMSM 91.49±1.00 90.22±1.85 91.85±0.57

Proposed methods

MCM 90.54±1.16 91.74±0.84 92.60±0.92
CMCM 92.34±1.00 91.94±0.94 92.82±0.92
wCMCM 92.96±0.72 92.23±0.94 93.17±0.41

fast wCMCM 92.91±1.16 91.94±0.60 93.17±0.31

discriminant spaces. For instance, CMCM and wCMCM showed better results than

CMSM by more than 1% on the RGBD and YTF datasets.

Furthermore, the proposed method achieved competitive results compared with

more powerful subspace-based methods. This result also supports the validity of the

proposed methods, and indicates that our cone-based frameworks can be further en-

hanced by utilizing the progress of the subspace-methods in the future.

7. Conclusion

In this paper, we established a novel framework for image set classification, which

is based on the convex cone representation, referred to as the constrained mutual convex

cone method (CMCM).

The key idea of our framework is to represent an image set by a convex cone and

then measure the similarity between two image sets as the geometric similarity between

two corresponding convex cones. The geometric similarity of two convex cones is

measured with the angles between them, which we defined newly in this paper, by

using the alternating least squares method. To derive higher performance from our cone
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representation, we designed a new type of discriminant space that increases the class

separability between sets of cones from different classes. Moreover, we enhanced the

ability of this discriminant space by introducing weights to enlarge the gaps between

a pair of close convex cones. As CMCM has high computational cost, we constructed

its fast implementation by combining our cone-based method with the conventional

subspace-based method.

In the evaluation experiments, we first verified that using multiple angles is essen-

tial to compare two convex cones. Then, we demonstrated that the difference between

convex cones could capture more useful information for image-set classification. The

classification performance of the proposed frameworks was evaluated through exten-

sive experiments, showing that it can achieve competitive results compared with vari-

ous conventional methods.

In the future, we will further explore the development of 1) a novel discriminant

space for convex cones by incorporating recent advances in image feature extraction

methods, such as [49–51], to enhance the classification performance, and 2) a fast

calculation method of the smallest angles between convex cones.
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