124 research outputs found

    Static stiffness modeling and sensitivity analysis for geared system used for rotary feeding

    Get PDF
    The positioning accuracy of rotary feed system under load greatly depends on the static stiffness of mechanical transmission system. This paper proposes a unified static stiffness model of rotary feed system with geared transmission system. Taking the torsional stiffness of transmission shaft and mesh stiffness of gear pairs into account, the motion equations of the whole transmission system are presented. Based on the static equilibrium, a unified expression for the relationship between torsional angles of two adjacent elements is derived. Then a unified static stiffness model is presented. Furthermore, analytical expressions for sensitivity analysis of the static stiffness on the individual element’s stiffness and design parameters are derived. The presented model is verified by a traditional model, and a good agreement is obtained. The influence of phase angle of meshing gear pairs on the resultant static stiffness is investigated. An example transmission system is employed to perform the sensitivity analysis and the results are analyzed. The proposed model provides an essential tool for the design of rotary feed system satisfying requirement of static stiffness

    Survival Motor Neuron (SMN) Protein Insufficiency Exacerbates Renal Ischemia/Reperfusion Injury

    Get PDF
    The survival of motor neuron (SMN) protein is ubiquitously involved in spliceosome assembly and ribonucleoprotein biogenesis. SMN protein is expressed in kidney and can affect cell death processes. However, the role of SMN in acute kidney injury (AKI) is largely unknown. In the current study, we found that the expression of SMN in the kidney was significantly reduced in both clinical ischemic AKI and a mouse model of renal ischemia-reperfusion injury (IRI). We then used SMN heterozygous knockout (SMN+/-) mice and found that the declines in renal function, tubular injury, and tubular cell apoptosis after experimental IRI were significantly more severe in SMN+/− mice than those in their wild-type littermates. Concomitantly, the canonical transcription factor nuclear factor-κb (NFκb) signaling was enhanced in ischemic SMN+/− mice. In vitro, cobalt dichloride (CoCl2) treatment reduced SMN expression in proximal tubular epithelial cells. In addition, CoCl2-induced apoptosis and activation of NFκb signaling pathway were enhanced by transient transfection of a small-interfering RNA (siRNA) against SMN while attenuated by transient transfection of a full-length SMN plasmid. Taken together, this study for the first time supported the protective role of SMN in ischemic AKI

    A novel COL4A1 frameshift mutation in familial kidney disease: the importance of the C-terminal NC1 domain of type IV collagen.

    Get PDF
    BACKGROUND: Hereditary microscopic haematuria often segregates with mutations of COL4A3, COL4A4 or COL4A5 but in half of families a gene is not identified. We investigated a Cypriot family with autosomal dominant microscopic haematuria with renal failure and kidney cysts. METHODS: We used genome-wide linkage analysis, whole exome sequencing and cosegregation analyses. RESULTS: We identified a novel frameshift mutation, c.4611_4612insG:p.T1537fs, in exon 49 of COL4A1. This mutation predicts truncation of the protein with disruption of the C-terminal part of the NC1 domain. We confirmed its presence in 20 family members, 17 with confirmed haematuria, 5 of whom also had stage 4 or 5 chronic kidney disease. Eleven family members exhibited kidney cysts (55% of those with the mutation), but muscle cramps or cerebral aneurysms were not observed and serum creatine kinase was normal in all individuals tested. CONCLUSIONS: Missense mutations of COL4A1 that encode the CB3 [IV] segment of the triple helical domain (exons 24 and 25) are associated with HANAC syndrome (hereditary angiopathy, nephropathy, aneurysms and cramps). Missense mutations of COL4A1 that disrupt the NC1 domain are associated with antenatal cerebral haemorrhage and porencephaly, but not kidney disease. Our findings extend the spectrum of COL4A1 mutations linked with renal disease and demonstrate that the highly conserved C-terminal part of the NC1 domain of the α1 chain of type IV collagen is important in the integrity of glomerular basement membrane in humans

    Inducible Depletion of Satellite Cells in Adult, Sedentary Mice Impairs Muscle Regenerative Capacity without Affecting Sarcopenia

    Get PDF
    A key determinant of geriatric frailty is sarcopenia, the age-associated loss of skeletal muscle mass and strength. Although the etiology of sarcopenia is unknown, the correlation during aging between the loss of activity of satellite cells, which are endogenous muscle stem cells, and impaired muscle regenerative capacity has led to the hypothesis that the loss of satellite cell activity is also a cause of sarcopenia. We tested this hypothesis in male sedentary mice by experimentally depleting satellite cells in young adult animals to a degree sufficient to impair regeneration throughout the rest of their lives. A detailed analysis of multiple muscles harvested at various time points during aging in different cohorts of these mice showed that the muscles were of normal size, despite low regenerative capacity, but did have increased fibrosis. These results suggest that lifelong reduction of satellite cells neither accelerated nor exacerbated sarcopenia and that satellite cells did not contribute to the maintenance of muscle size or fiber type composition during aging, but that their loss may contribute to age-related muscle fibrosis

    Organic-Inorganic Perovskite Light-Emitting Electrochemical Cells with a Large Capacitance

    Get PDF
    While perovskite light-emitting diodes typically made with high work function anodes and low work function cathodes have recently gained intense interests. Perovskite light-emitting devices with two high work function electrodes with interesting features are demonstrated here. Firstly, electroluminescence can be easily obtained from both forward and reverse biases. Secondly, the results of impedance spectroscopy indicate that the ionic conductivity in the iodide perovskite (CH3 NH3PbI3) is large with a value of approximate to 10(-8) S cm(-1). Thirdly, the shift of the emission spectrum in the mixed halide perovskite (CH3NH3PbI3-Br-x(x)) light-emitting devices indicates that I(-)ions are mobile in the perovskites. Fourthly, this work shows that the accumulated ions at the interfaces result in a large capacitance (approximate to 100 mu F cm(-2)). The above results conclusively prove that the organic-inorganic halide perovskites are solid electrolytes with mixed ionic and electronic conductivity and the light-emitting device is a light-emitting electrochemical cell. The work also suggests that the organic-inorganic halide perovskites are potential energy-storage materials, which may be applicable in the field of solid-state supercapacitors and batteries.While perovskite light-emitting diodes typically made with high work function anodes and low work function cathodes have recently gained intense interests. Perovskite light-emitting devices with two high work function electrodes with interesting features are demonstrated here. Firstly, electroluminescence can be easily obtained from both forward and reverse biases. Secondly, the results of impedance spectroscopy indicate that the ionic conductivity in the iodide perovskite (CH3NH3PbI3) is large with a value of ≈10-8 S cm-1. Thirdly, the shift of the emission spectrum in the mixed halide perovskite (CH3NH3PbI3-xBrx) light-emitting devices indicates that I- ions are mobile in the perovskites. Fourthly, this work shows that the accumulated ions at the interfaces result in a large capacitance (≈100 μF cm-2). The above results conclusively prove that the organic-inorganic halide perovskites are solid electrolytes with mixed ionic and electronic conductivity and the light-emitting device is a light-emitting electrochemical cell. The work also suggests that the organic-inorganic halide perovskites are potential energy-storage materials, which may be applicable in the field of solid-state supercapacitors and batteries. Light-emitting electrochemical cells (LECs) of organic-inorganic perovskite (CH3NH3PbI3) with two high work function electrodes are demonstrated. Results indicate that CH3NH3PbI3 has an ionic conductivity of ≈10-8 S cm-1. The accumulated ions at the interfaces result in a large capacitance, which suggests a potential application in electrochemical energy-storage devices, such as solid-state supercapacitors and batteries
    • …
    corecore