
http://wrap.warwick.ac.uk/  

 
 

 
 
 
 
 
 
Original citation: 
Han, L., Zhang, D., Tian, Yanling, Wang, F. and Xiao, H.. (2014) Static stiffness 
modeling and sensitivity analysis for geared system used for rotary feeding. Proceedings 
of the Institution of Mechanical Engineers, Part C : Journal of Mechanical Engineering 
Science, 228 (8). pp. 1431-1443. 
Permanent WRAP url: 
http://wrap.warwick.ac.uk/76394  
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work of researchers of the 
University of Warwick available open access under the following conditions.  Copyright © 
and all moral rights to the version of the paper presented here belong to the individual 
author(s) and/or other copyright owners.  To the extent reasonable and practicable the 
material made available in WRAP has been checked for eligibility before being made 
available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge.  Provided that the authors, title and 
full bibliographic details are credited, a hyperlink and/or URL is given for the original 
metadata page and the content is not changed in any way. 
Publisher statement: 
First published by Sage 2014. 
http://dx.doi.org/10.1177/0954406213508387  
A note on versions: 
The version presented here may differ from the published version or, version of record, if 
you wish to cite this item you are advised to consult the publisher’s version.  Please see 
the ‘permanent WRAP url’ above for details on accessing the published version and note 
that access may require a subscription. 
 
For more information, please contact the WRAP Team at: publications@warwick.ac.uk  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/42617595?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/76394
http://dx.doi.org/10.1177/0954406213508387
mailto:publications@warwick.ac.uk


Static Stiffness Modeling and Sensitivity Analysis for Geared 

System Used for Rotary Feeding  

Lin Han, Dawei Zhang, Yanling Tian, Fujun Wang and Hui Xiao 

Key Lab of Ministry of Education for Mechanism Theory and Equipment Design, 

Tianjin University, Tianjin 300072, China  

Abstract. The positioning accuracy of rotary feed system under load greatly depends 

on the static stiffness of mechanical transmission system. This paper proposes a 

unified static stiffness model of rotary feed system with geared transmission system. 

Taking the torsional stiffness of transmission shaft, mesh stiffness of gear pairs into 

account, the motion equations of the whole transmission system are presented. Based 

on the static equilibrium, a unified expression for the relationship between torsional 

angles of two adjacent elements is derived. Then a unified static stiffness model is 

presented. Furthermore, analytical expressions for sensitivity analysis of the static 

stiffness on the individual element’s stiffness and design parameters are derived. The 

presented model is verified by a traditional model, and a good agreement is obtained. 

The influence of phase angle of meshing gear pairs on the resultant static stiffness is 

investigated. An example transmission system is employed to perform the sensitivity 

analysis and the results are analyzed. The proposed model provides an essential tool 

for the design of rotary feed system satisfying requirement of static stiffness.  

Key words: rotary feeding; geared system; static equilibrium; static stiffness; 

sensitivity analysis.  

1. Introduction  

Besides the linear feed system, rotary feed system, as a key component of 



multi-axis machine tool, plays a significant role in the performance of a whole 

machine tool. It’s known that transmission chain with weak stiffness will degrade the 

positioning accuracy of the rotary feeding. And stick-slip may be easily introduced if 

the stiffness of the transmission does not satisfy the requirement. Wu et al.
1
 proposed 

a mathematical model for the stiffness of the linear feed system of a heavy duty lathe. 

Ebrahimi M and Whalley R.
2
 modeled the stiffness of feed drive system of a machine 

tool, and then analyzed the effect of back-lash in transmission train and cutting force 

to the response of the system. Kim and Chung
3
 also modeled stiffness of a ball screw 

feed drive system where the motor is directly connected to the screw, then analyzed 

the influences of parameters of controller on the system stability. 

Most of literature about rotary feeding is about the geometric error measurement 

and modeling. W.T. Lei et al.
4
 proposed a measurement method for the geometric 

error of a rotary axis by double ball-bar. M. TSUTSUMI et al.
5
 measured and 

compared the characteristics of two rotary tables driven by worm gear and roller gear 

cam, and the results showed a better performance of the kind of table with roller gear 

cam. Hong et al.
6,7

 investigated the influence of position-dependent geometric errors 

of rotary axes on a machining test of cone frustum by five-axis machine tools through 

both simulation and experiment approaches. After sensitivity analysis, the results 

showed that not all of the geometric error components of the table’s are the critical 

effort factors for cone frustum machining test. Later, the authors presented a method 

for observing thermally induced geometric errors of a rotary axis with a static R-test. 

The thermal influence on the error motions of a rotary axis is quantitatively 



parameterized by geometric errors that vary with time. Ibaraki et al.
8,9

 proposed a 

scheme to calibrate error motions of rotary axes on a five-axis machining center by 

using the R-test and an algorithm to identify both location errors and 

position-dependent geometric errors were also presented, after which, a scheme to 

calibrate the error map of rotary axes by on-the-machine measurement of test pieces 

by using a contact-type touch-trigger probe installed on the machine’s spindle was 

also proposed. K. Lee et al.
10,11

 proposed a method to measure the geometric errors of 

the rotary axis of machine tools by double ball-bar, where set-up errors were also 

taken into account in the measured data. Then an error separation technology by 

polynomial fitting was employed to get the individual error terms. Recently, the 

measurement uncertainty analysis was performed to quantify the confidence interval 

of the result.  

The research about dynamic performance of rotary feed system could be found in 

references [12-17]. M.S. Lysov, A.V. Starikov
12

 modeled the nonlinear factors 

involved in worm geared system and implemented a simulation incorporating the 

controller part. The results showed that the free play in the kinematic chain and the 

stiffness of the mechanical transmission had a direct effect on the static and dynamic 

precision of the table’s control system. Ryuta SATO
13

 proposed a mathematical model 

of CNC rotary table driven by a worm gear, where the inertia of motor, spur and worm 

gears were incorporated. The simulation results agreed well with those from the 

experiment. A fault diagnosis theme for rotary axis used in machine tools was 

proposed by F. Zhao et al., based on a motor current test and the ensemble empirical 



mode decomposition method
14

. The authors in [15] investigated the axial performance 

of a large and heavy NC rotary table, based on the force analysis of a ZT20SW driven 

by double worm gear pairs. A dynamic model and an electromechanical-hydraulic 

coupling model in the circumferential direction were established. Then the factors 

affecting the dynamic accuracy of the table were revealed. Later, the preload of the 

brake worm employed in an NC rotary table was optimized by modeling an 

electromechanical-hydraulic coupling
 16

. Feng and Jiang
17

 proposed a type of rotary 

feed system supplied by a constant flow pump and a constant pressure one to satisfy 

the higher stiffness requirement in heavy machine tools. Then a mathematical model 

is presented based on hydrostatic theory to predict the axial static performance of the 

rotary table.  

The positioning accuracy of the rotary feed system without load mainly depends 

on the geometric error (e.g., free play between meshing teeth); however, when torque 

load is applied, rotating angular deviation from the desired mainly comes from the 

stiffness of the transmission chain. However, few researches could have been found. 

The purposes of this paper include: (1) modeling the stiffness of a power train 

employed in rotary feed system of a multi-axis machine tool in a unified way; (2) 

conducting sensitivity analysis of the equivalent stiffness. Firstly, the definition of the 

static stiffness in power chain is given. Then a unified static stiffness model is 

proposed based on static equilibrium condition of the chain. The analytical 

expressions for sensitivity analysis of the equivalent stiffness to the individual 

stiffness are then derived. Furthermore, the sensitivity to the design parameters of 



components of the power train is also presented. Finally, a case study is conducted.  

2. Static Stiffness Modeling  

A typical geared transmission system is shown in Figure 1. T1 is the driving 

torque, TL is the load torque, θi (i=1, … , N+1) represent rotating angle of each 

element in the transmission chain. Usually, a transmission chain includes motor, belt, 

gear pairs and shafts, et al.  

Driving table gear

1 N

1T

LT

itotal

N

1

(The end gear)

 

Figure 1 a typical geared transmission system 

Under rigid body assumption, the ideal transmission ratio from the driving to the 

end gear or worktable is itotal, that’s to say 1 1  N totali . However, because of the 

elasticity of shaft and meshing teeth, the actual rotating angle of the end gear or 

driving table gear is 

 1 1    N totali   (1) 

where  is the equivalent total torsional deflection of the geared transmission due to 

the elastic deformations of shaft and meshing gear pairs.  

A schematic diagram of the transmission chain with elastic shaft and meshing teeth is 

shown in Figure 2(a) where the shaft is regarded as a mass-less elastic element and the 

inertia is equally distributed to its two ends. If a load torque LT is applied to the 



worktable, then the static stiffness of the transmission chain could be given as 
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The rotation angle of each element is denoted as i  in sequence. The even subscript 

represents the driving gear, whereas the odd represents the driven gear. Similarly, the 

odd subscript numbers of ik represent the torsional stiffness of the (i-2)
th

 shaft, and the 

even ones stand for the meshing stiffness of gear pairs.  
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Figure 2 schematic diagram of the transmission chain 

A free body diagram of a gear is shown in Figure 2(b). According to the second law of 

Newton, the dynamic equation of the transmission system could be obtained: 
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of each gear, bir denotes the radius of basis circle of i
th

 gear and ci means the damping 



coefficients of both shafts and meshing gears. 

Under static equilibrium condition, there are no relative movements between 

elements, which means both the rotating speeds and accelerations of each element in 

the transmission system are zeros: 

 1 2 1 0N N        & & & &L , 1 2 1 0N N        && && && &&L  (4) 

Then Eq.(3) could be simplified as  
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Assuming that the motor shaft is fixed ( 1 0  ) and substituting expressions of 

( )nq t into above equations yields  
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where ( 1)n nA  takes the following general form 
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To be noted that 12 0A  . Recalling the last equation of Eq. (5), the general expression 

for static stiffness is obtained: 
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static N Nb N bN b N N N

T
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  (8a) 

As the meshing stiffness of gear pairs is time-varying, the above equation could be 

rewritten as 

 2
( 1) ( 1) ( 1)( )static N Nb N bN b N N Ntk r k r r k A     (8b) 

which is called quasi-static stiffness of the transmission system. 

3. Sensitivity Analysis  

3.1 Sensitivity to element’s stiffness  

To find the most sensitive stiffness element to the equivalent tangential stiffness in the 

transmission system, sensitivity analysis is conducted in this section. The results of 

sensitivity analysis could be employed to find the element with low stiffness and then 

make modifications to satisfy the stiffness requirement of the whole transmission 

chain.  

As could be seen from Eq. (7), nk is related to both ( 1)n nA  and ( 1)( 2)n nA   . 

Differentiating statick with respect to nk yields 
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According to Eq.(7), if n is an odd number, then n+1 is an even one and there are  
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Similarly, there are  
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If n is an even number. 

Thus, the expression for ° 1( )n nA k is given by 
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And the partial differential of statick to ( 1)( 2)n nA   is  
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Combining equations (9)~(13), the sensitivity formulation of static stiffness to 

stiffness of each element could be obtained:  



 

2 2
( 1) ( 1)

1

2 2
( 1) 1 ( 1)

1

2
( 1) 1

( 1) , 1

( ) , 1

( )

N

n n i i

i n

N

bn n n bn i i

i n

bN N N bN

static

n

A A n odd n N

r A r A n even n N

r A r n N

k

k

 

 

  

 

 


   


 

    
 


 








 (14) 

where n=odd represents the sensitivity to shaft’s torsional stiffness, while n=even 

stands for the sensitivity to the mesh stiffness of gear pairs. 

3.2 Sensitivity to shaft’s parameters  

In the above section, the sensitivity to element’s stiffness is analyzed. However, to 

facilitate the design of transmission system, the relationship between the static 

stiffness and design parameters has to be established, which introduces the sensitivity 

analysis of static stiffness to design parameters. Thus, in this section, the influences of 

design parameters (radius and length of a shaft, teeth number and module of gears, etc) 

on the static stiffness will be investigated. 

As shown in Figure 3, the torsional stiffness of ith section of the nth shaft could 

be expressed as  
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Figure 3 schematic of shaft in transmission system 



The torsional stiffness of the nth shaft could be regarded as a series of these 

sections, and could be computed as 
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Seen from Eq. (15a), differentiating ( )i
nk with respect to ( )i

nr yields  
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Similarly, the partial differential to the length is computed as  
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Combining Eqs.(15) &(16), the sensitivity of the nth torsional stiffness to the shaft’s 

parameters is given by 
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Further, the sensitivity of the static stiffness to the design parameters of shafts could 

be obtained: 
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Here, to be noted that n must be an odd number corresponding to the stiffness of shaft. 

3.3 Sensitivity to gear’s parameters  

The meshing stiffness of gear pair is determined by gear’s parameters, like the teeth 

number z, module m, width of gear B, etc. For multi-stage transmission system, there 

may be several sets of parameters that satisfy the transmission ratio requirement. 

However, under constraint of static stiffness requirement, there may be an optimal set 

of parameters. Thus, sensitivity analysis is needed to provide a useful way to choose 

an optimal parameter set.  

Rewriting Eq. (7) in the form of gear’s parameters results in  
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3.4 Sensitivity to driving gear’s teeth number  

By continuous differential operation, the sensitivity to driving gear’s teeth number is 

computed as 
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Similarly, the sensitivity to driven gear’s teeth number is given by 
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The sensitivity to gear’s width is given by 
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Based on the basic formulations for gear, there are 
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where m, α are the module and pressure angle, respectively.  

In Figure 4, the x-axis represents the meshing time for a pair of gears, and y-axis 

represents the meshing stiffness of the meshing gear teeth. Tm means the meshing 

period, Sm is the time interval for double teeth contact in a period. t1, t2, t3 represent 

the change time of mesh stiffness of helical gear pairs. Kmax denotes the maximum 

mesh stiffness of gear teeth, Kmin denotes the minimum stiffness and Km represents the 

mean value of the stiffness. Figure 4(a) shows the mesh stiffness of spur gear pair, 

whereas mesh stiffness of helical gear pair is shown in Figure 4(b). As shown in the 

figure, the mesh stiffness is periodically time-varying.  
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Figure 4 meshing stiffness of gear pair: (a) spur gear pair (b) helical gear pair  

The stiffness usually could be expanded into Taylor’s series and the nth mesh 

stiffness could be expressed as 
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  (22)  

where  n is the contact ratio, m  is the meshing frequency,   is phase angle . 

, 0,1.5m n nk k , 0,0.5n nk  , 0,nk is defined as the mean mesh stiffness of a single tooth 

pair and takes the following form
18

: 

 0, 1( , , ) 6400 /n n n n nk z z B B q 
  (23a) 

where nB is the gear width and q for gears without addendum modification is 

approximated by
18
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  (23b) 

The contact ratio n in Eq. (22) is given by  
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where 1a  , 2a  are the pressure angles at addendum of pinion and gear, 

respectively, '  is the pressure angle at pitch circle of gears under non-standard 

installation. Under standard installation, the contact ratio is only the function of teeth 

number. 
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where 1(tan tan ') /(2 )ana     , 2(tan tan ') /(2 )anb      

Then the mesh stiffness for nth gear pair is expressed as 

 1 1 0, 1( , , , ) ( , , ) ( , , )n n n n n n n n n n nk z z B t L z z t k z z B   
  (23e) 

Therefore, the sensitivities of mesh stiffness to teeth number, width are obtained by 

partial differentiating: 
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Combining Eqs (21)~(23), the sensitivity of static stiffness to the gear’s 

parameter could be found in an analytical expression form. 

4. Example Study  

4.1 Model verification  

To verify the presented unified static stiffness model, a comparison between the 

proposed model and traditional model is conducted.  
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Figure 5 an example transmission system 

A two-stage transmission system is shown in Figure 5. The torsional stiffnesses 

of shafts are denoted as k1, k3, respectively. Accordingly, the mesh stiffnesses of gear 

pairs are denoted as k2, k4, respectively. The system’s parameters are shown in Table 

1.  

Table 1 parameters of the two-stage transmission system 

 Gear 2 Gear 3 Gear 4 Gear 5 Shaft 1 Shaft 3 

Teeth 

number 

21 67 17 71   

Module (m) 4 5   

Width (mm) 56 66   

Pressure 

angle 

20° 

Speed (rpm)  1  

Radius (mm)     35 35 

Length (mm)     80 80 

In traditional modeling method, the system is equivalent to be a series system of 

springs with different stiffness values of shaft’s. According to energy-equivalent 

principle, the static stiffness keq of the series after equivalent could be obtained as: 
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Figure 6 comparison between the results from two models: (a) static stiffness (b) angular error 

under unit torque 

The results from both models are shown in Figure 5(a), where the torsional 

stiffness of shaft I is taken as a variable. As could be seen from the figure 6(a), a good 

agreement is obtained, even though there is little difference (about 1/1000 of the 

estimated stiffness value) between two results which are induced by the mesh stiffness 

of gear pairs. It’s also could be seen from the figure that the static stiffness increases 

with the increasing of the shaft’s stiffness, however, the increasing rate becomes 

smaller and smaller. Obviously, similar cases could be found when stiffness of other 

elements is taken as a variable, as the system is equivalent to a series of springs. 

Figure 6(b) shows the estimations of angular errors from two models under unit 

torque load and the difference between the results from two models is small enough to 

be neglected.  
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Figure 7 meshing phase angle  

The phase angle for each meshing gear pair is denoted by . As shown in Figure 

7, if the solid line is taken as the reference which means 0solid  , then the mesh 

phase angle difference between two pairs is
2

mT



. The corresponding static stiffness 

of the example with different phase angles is shown in Figure 8, respectively. The 

x-axis represents the rotating time of the end gear, while the y-axis represents the 

resultant static stiffness. 
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Figure 8 static stiffness with phase angle difference  

As the figure shows, the resultant static stiffness takes different extremes and 

frequencies under different phase angles of the two meshing pairs. Thus, the phase 

angle should be paid attentions to get desired profile of static stiffness. It’s that the 

difference becomes smaller in geared system with more stages. Similar to reference 

[1], the mean value of the mesh stiffness of individual meshing pair is employed to 

conduct sensitivity analysis. 

4.2 Sensitivity analysis results  



The sensitivity to individual element’s stiffness is shown in Figure 9. As 

mentioned above, only the mean value of the mesh stiffness is considered in the 

simulation.  
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Figure 9 sensitivity to individual’s stiffness 

It’s shown that the two shafts’ torsional stiffnesses are more sensitive to the 

equivalent static stiffness, compared to those of two gear pairs. Moreover, the second 

shaft’s torsional stiffness is the most sensitive one, as it’s nearer to the end worktable.  

The sensitivity to teeth number is shown in Figure 10. As could be seen from the 

figure 10(a), the teeth numbers of gear pair nearer to the end driven gear are more 

sensitive to the equivalent static stiffness. In addition, the teeth number of driving gear 

of each gear pair is more sensitive to the static stiffness, compared with the driven 

gear’s one. Meanwhile, as figure 10 (b) shows, the width of the gear pair at the output 

shaft is more sensitive than those far away from the output shaft.  
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Figure 10 sensitivity to teeth number and gear width 

It’s known that the longer of a shaft is, the smaller of the torsional stiffness is. 

However, only the absolute values of sensitivity of static stiffness to the shaft’s 

parameters are used in the analysis.  
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Figure 11 sensitivity to shaft’s parameters  

As shown in Figure 11, the shaft’s radius is more sensitive to the static stiffness 

than the length of the shaft. Moreover, the sensitivity of the shaft’s parameters nearer 

to the end gear is more sensitive than those far away from the end gear. 

5. Conclusion  

This paper presented a unified static stiffness model for geared transmission system. 



The analytical expressions for sensitivity of the static stiffness to individual stiffness 

including torsional stiffness of shaft and mesh stiffness of gear pair were derived. For 

the presented example transmission system, the effect of phase angle on the resultant 

static stiffness should not be ignored if more accurate value of stiffness is desired. 

Furthermore, the sensitivity of static stiffness to the geared system’s design 

parameters was also explored. Following conclusions could be reached: 

1) the influence of gear pair’ mesh stiffness on the equivalent stiffness is less 

significant than those of the shafts in the geared system;   

2) the radius of a shaft is more sensitive to the static stiffness than the length of the 

shaft;  

3) the teeth number of driving gear is more sensitive than the driven gear’s, similar 

conclusion could be made about the gear’s width.  

The presented model and sensitivity analysis provides an essential tool for further 

performance improvement of geared transmission chain. Future work will focus on: a) 

the optimization of design parameters to minimize the chain’s volume, b) stiffness 

matching designs for a transmission chain, where the static stiffness will be dealt as a 

constraint or an objective.  
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Appendix  

 

notation   

aε auxiliary parameter rbi radius of basis circle of i
th
 gear 

An(n+1) auxiliary parameter rn
(i)

 radius of i
th
 section of n

th
 shaft 

bε auxiliary parameter Sm time interval for double teeth contact 

Bn gear width Sn number of sections of n
th
 shaft 

ci damping coefficient t1, t2, t3 different mesh time instant 

Dn auxiliary parameter T1 driving torque 

E Young modulus TL load torque 

G =0.5E/(1+v) Tm meshing period 

Hn
(j)

 auxiliary parameter zn tooth number of n
th 

gear 

itotal transmission ratio   

Ji inertia of i
th

 gear α pressure angle 

J
(i)

 polar moment of inertia α’ pressure angle at pitch circle 

k0,n mean stiffness of single tooth αa1 pressure angle at addendum of pinion 

ki individual stiffness αa2 pressure angle at addendum of gear 

kstatic static stiffness ∆n auxiliary parameter 

Km mean value of mesh stiffness ∆θ angular error 

Kmax maximum mesh stiffness εn contact ratio of n
th
 gear pair 

Kmin minimum mesh stiffness θi rotating angle 

L
(i)

 length of shaft v Poisson coefficient 

Ln auxiliary parameter φ phase angle 

mn modulus of n
th
 gear ωm meshing frequency 

q auxiliary parameter   

qn auxiliary parameter   

    

 


