11,785 research outputs found
The Juelich hyperon-nucleon model revisited
A one-boson-exchange model for the hyperon-nucleon (\Lambda N, \Sigma N)
interaction is presented. The model incorporates the standard one boson
exchanges of the lowest pseudoscalar and vector meson multiplets with coupling
constants fixed by SU(6) flavor symmetry relations. As the main new feature of
the model, the contributions in the scalar--isoscalar (\sigma) and
vector--isovector (\rho) exchange channels are now constrained by a microscopic
model of correlated \pi\pi and K \bar K exchange. Additional short-ranged
ingredients of the model in the scalar--isovector (a_0) and scalar--isospin-1/2
(\kappa) channels are likewise viewed as arising from meson-meson correlations
but are treated phenomenologically. With this model a satisfactory reproduction
of the available hyperon-nucleon data can be achieved.Comment: 24 pages, 13 figures, some modifications to text, several references
added, some figures corrected, to appear in Phys. Rev.
Canonical treatment of two dimensional gravity as an anomalous gauge theory
The extended phase space method of Batalin, Fradkin and Vilkovisky is applied
to formulate two dimensional gravity in a general class of gauges. A BRST
formulation of the light-cone gauge is presented to reveal the relationship
between the BRST symmetry and the origin of current algebra. From the
same principle we derive the conformal gauge action suggested by David, Distler
and Kawai.Comment: 11 pages, KANAZAWA-92-1
A Realistic Description of Nucleon-Nucleon and Hyperon-Nucleon Interactions in the SU_6 Quark Model
We upgrade a SU_6 quark-model description for the nucleon-nucleon and
hyperon-nucleon interactions by improving the effective meson-exchange
potentials acting between quarks. For the scalar- and vector-meson exchanges,
the momentum-dependent higher-order term is incorporated to reduce the
attractive effect of the central interaction at higher energies. The
single-particle potentials of the nucleon and Lambda, predicted by the G-matrix
calculation, now have proper repulsive behavior in the momentum region q_1=5 -
20 fm^-1. A moderate contribution of the spin-orbit interaction from the
scalar-meson exchange is also included. As to the vector mesons, a dominant
contribution is the quadratic spin-orbit force generated from the rho-meson
exchange. The nucleon-nucleon phase shifts at the non-relativistic energies up
to T_lab=350 MeV are greatly improved especially for the 3E states. The
low-energy observables of the nucleon-nucleon and the hyperon-nucleon
interactions are also reexamined. The isospin symmetry breaking and the Coulomb
effect are properly incorporated in the particle basis. The essential feature
of the Lambda N - Sigma N coupling is qualitatively similar to that obtained
from the previous models. The nuclear saturation properties and the
single-particle potentials of the nucleon, Lambda and Sigma are reexamined
through the G-matrix calculation. The single-particle potential of the Sigma
hyperon is weakly repulsive in symmetric nuclear matter. The single-particle
spin-orbit strength for the Lambda particle is very small, in comparison with
that of the nucleons, due to the strong antisymmetric spin-orbit force
generated from the Fermi-Breit interaction.Comment: Revtex v2.09, 69 pages with 25 figure
Hybridization Mechanism for Cohesion of Cd-based Quasicrystals
Cohesion mechanism of cubic approximant crystals of newly discovered binary
quasicrystals, CdM (M=Yb and Ca), are studied theoretically. It is found
that stabilization due to alloying is obtained if M is an element with
low-lying unoccupied states. This leads to conclusion that the cohesion of
the Cd-based compounds is due to the hybridization of the states of Yb and
Ca with a wide band. %unlike known stable quasicrystals without transition
elements %such as Al-Li-Cu and Zn-Mg-RE (RE:rare earth). Although a diameter of
the Fermi sphere coincides with the strong Bragg peaks for Cd-Yb and Cd-Ca, the
Hume-Rothery mechanism does not play a principal role in the stability because
neither distinct pseudogap nor stabilization due to alloying is obtained for
isostructural Cd-Mg. In addition to the electronic origin, matching of the
atomic size is very crucial for the quasicrystal formation of the Cd-based
compounds. It is suggested that the glue atoms, which do not participate in the
icosahedral cluster, play an important role in stabilization of the compound.Comment: 4 pages, 2 figure
Comparison between the Cramer-Rao and the mini-max approaches in quantum channel estimation
In a unified viewpoint in quantum channel estimation, we compare the
Cramer-Rao and the mini-max approaches, which gives the Bayesian bound in the
group covariant model. For this purpose, we introduce the local asymptotic
mini-max bound, whose maximum is shown to be equal to the asymptotic limit of
the mini-max bound. It is shown that the local asymptotic mini-max bound is
strictly larger than the Cramer-Rao bound in the phase estimation case while
the both bounds coincide when the minimum mean square error decreases with the
order O(1/n). We also derive a sufficient condition for that the minimum mean
square error decreases with the order O(1/n).Comment: In this revision, some unlcear parts are clarifie
Wavelet analysis of one-dimensional cosmological density fluctuations
Wavelet analysis is proposed as a new tool for studying the large-scale structure formation of the universe. To reveal its usefulness, the wavelet decomposition of one-dimensional cosmological density fluctuations is performed. In contrast with the Fourier analysis, the wavelet analysis has advantage of its ability to keep the information for location of local density peaks in addition to that for their scales. The wavelet decomposition of evolving density fluctuations with various initial conditions is examined. By comparing the wavelet analysis with the usual Fourier analysis, we conclude that the wavelet analysis is promising as the data analysis method for the Sloan Digital Sky Survey and COBE
LiV2O4: evidence for two-stage screening
LiV2O4, a frustrated mixed valent metal (d^1 d^2), is argued to undergo
two spin-screening processes. The first quenches the effective spin to produce
the spin 1/2 behavior seen below room temperature[1], while the second produces
the heavy fermi liquid character seen at low temperatures[2]. We present here a
preliminary discussion of a t-J model with strong Hund's coupling of the
strongly correlated d-electrons. Valence fluctuations of the Hubbard operators
(S = {1/2} 1) combined with the frustration of the underlying corner-shared
tetrahedral vanadium lattice are the essential components of our model.Comment: 5 pages, 1 figure, accepted for proceedings of SCES'2001 Physica B,
minor change
- …