94 research outputs found

    De Novo Synthesis and Functional Study of Primitive Polypeptides in the Prebiotic Protein World

    Get PDF
    DNA, RNA and proteins within a lipid-bound membrane are the core components of life, but the order of their appearance during the origin of life is still under debate. The widely accepted RNA World hypothesis states that RNA likely emerged prior to proteins and DNA since RNA can serve both replicative and catalytic roles. While biochemists have reproduced the synthesis, polymerization, and replication of nucleotides and RNA under controlled prebiotic conditions, it is clear that such complex organic molecules were are not present in significant amounts in the the starting prebiotic material on Earth either from endogenous production or meteoritic input. In contrast, amino acids are naturally abundant in various prebiotic contexts such as carbonaceous chondrites and Urey-Miller type experiments, and many studies have demonstrated that under plausible prebiotic conditions amino acids could condense or polymerize to give rise to short peptides. These findings support the basis of a Protein World hypothesis for life, however little has been done to study the functions of such primitive peptides. Here we present our novel synthetic biology-based approach to the de novo synthesis of billions of primitive peptidesproteins derived from a limited set of naturally abundant proteinogenic amino acids such as glycine, alanine, aspartic acid, glutamic acid, valine and serine. Of these peptides, the ones with divalent metal-binding capability are of particular interest and will be screened and identified. Certain divalent metals were likely present in prebiotic environments. Not only do they coordinate well with amino acids, but they also catalyze reactions, which are difficult to achieve in organic chemistry. Since D-chiral and non-proteinogenic amino acids are also abundant in the universe and may provide insight into the pathway by which life developed, we will also discuss methods to analyze primitive peptides consisting of these amino acids and D-chiral and non-proteinogenic amino acids. By understanding this naturalistic pathway, we will be able to better understand how life developed here on Earth. Since these amino acids are abundant in universe, this work provide insight into pathways by which life developed on Earth and, by extension, the probability of life arising elsewhere

    Sequence Evidence in the Archaeal Genomes that tRNAs Emerged Through the Combination of Ancestral Genes as 5′ and 3′ tRNA Halves

    Get PDF
    The discovery of separate 5′ and 3′ halves of transfer RNA (tRNA) molecules—so-called split tRNA—in the archaeal parasite Nanoarchaeum equitans made us wonder whether ancestral tRNA was encoded on 1 or 2 genes. We performed a comprehensive phylogenetic analysis of tRNAs in 45 archaeal species to explore the relationship between the three types of tRNAs (nonintronic, intronic and split). We classified 1953 mature tRNA sequences into 22 clusters. All split tRNAs have shown phylogenetic relationships with other tRNAs possessing the same anticodon. We also mimicked split tRNA by artificially separating the tRNA sequences of 7 primitive archaeal species at the anticodon and analyzed the sequence similarity and diversity of the 5′ and 3′ tRNA halves. Network analysis revealed specific characteristics of and topological differences between the 5′ and 3′ tRNA halves: the 5′ half sequences were categorized into 6 distinct groups with a sequence similarity of >80%, while the 3′ half sequences were categorized into 9 groups with a higher sequence similarity of >88%, suggesting different evolutionary backgrounds of the 2 halves. Furthermore, the combinations of 5′ and 3′ halves corresponded with the variation of amino acids in the codon table. We found not only universally conserved combinations of 5′–3′ tRNA halves in tRNAiMet, tRNAThr, tRNAIle, tRNAGly, tRNAGln, tRNAGlu, tRNAAsp, tRNALys, tRNAArg and tRNALeu but also phylum-specific combinations in tRNAPro, tRNAAla, and tRNATrp. Our results support the idea that tRNA emerged through the combination of separate genes and explain the sequence diversity that arose during archaeal tRNA evolution

    Synthetic Biology and the Search for Extraterrestrial Life

    Get PDF
    Are we alone? is one of the primary questions of astrobiology, and whose answer defines our significance in the universe. Unfortunately, this quest is hindered by the fact that we have only one confirmed example of life, that of earth. While this is enormously helpful in helping to define the minimum envelope for life, it strains credulity to imagine that life, if it arose multiple times, has not taken other routes. To help fill this gap, our lab has begun using synthetic biology, the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes, as an enabling technology. One theme, the Hell Cell project, focuses on creating artificial extremophiles in order to push the limits for Earth life, and to understand how difficult it is for life to evolve into extreme niches (http:2012.igem.orgTeam:Stanford-BrownHellCellIntroduction). In another project, we are re-evolving biotic functions using only the most thermodynamically stable amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids. This should lead to a more universal theory of the origin of life based on materials found commonly in meteorites and other pre-biotic settings

    Computational prediction and experimental validation of evolutionarily conserved microRNA target genes in bilaterian animals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In many eukaryotes, microRNAs (miRNAs) bind to complementary sites in the 3'-untranslated regions (3'-UTRs) of target messenger RNAs (mRNAs) and regulate their expression at the stage of translation. Recent studies have revealed that many miRNAs are evolutionarily conserved; however, the evolution of their target genes has yet to be systematically characterized. We sought to elucidate a set of conserved miRNA/target-gene pairs and to analyse the mechanism underlying miRNA-mediated gene regulation in the early stage of bilaterian evolution.</p> <p>Results</p> <p>Initially, we extracted five evolutionarily conserved miRNAs (<it>let-7</it>, <it>miR-1</it>, <it>miR-124</it>, <it>miR-125/lin-4</it>, and <it>miR-34</it>) among five diverse bilaterian animals. Subsequently, we designed a procedure to predict evolutionarily conserved miRNA/target-gene pairs by introducing orthologous gene information. As a result, we extracted 31 orthologous miRNA/target-gene pairs that were conserved among at least four diverse bilaterian animals; the prediction set showed prominent enrichment of orthologous miRNA/target-gene pairs that were verified experimentally. Approximately 84% of the target genes were regulated by three miRNAs (<it>let-7, miR-1</it>, and <it>miR-124</it>) and their function was classified mainly into the following categories: development, muscle formation, cell adhesion, and gene regulation. We used a reporter gene assay to experimentally verify the downregulation of six candidate pairs (out of six tested pairs) in HeLa cells.</p> <p>Conclusions</p> <p>The application of our new method enables the identification of 31 miRNA/target-gene pairs that were expected to have been regulated from the era of the common bilaterian ancestor. The downregulation of all six candidate pairs suggests that orthologous information contributed to the elucidation of the primordial set of genes that has been regulated by miRNAs; it was also an efficient tool for the elimination of false positives from the predicted candidates. In conclusion, our study identified potentially important miRNA-target pairs that were evolutionarily conserved throughout diverse bilaterian animals and that may provide new insights into early-stage miRNA functions.</p

    Draft Genome Sequence of Hymenobacter sp. Strain AT01-02, Isolated from a Surface Soil Sample in the Atacama Desert, Chile

    Get PDF
    Here, we report the 5.09-Mb draft genome sequence of Hymenobacter sp. strain AT01-02, which was isolated from a surface soil sample in the Atacama Desert, Chile. The isolate is extremely resistant to UV-C radiation and is able to accumulate high intracellular levels of Mn/Fe

    A Fly-Through Mission Strategy Targeting Peptide as a Signature of Chemical Evolution and Possible Life in Enceladus Plumes

    Get PDF
    In situ detection of organic molecules in the extraterrestrial environment provides a key step towards better understanding the variety and the distribution of building blocks of life and it may ultimately lead to finding extraterrestrial life within the Solar System. Here we present combined results of two separate experiments that enable us to realize such in situ life signature detection from the deep habitats of the "Ocean World": a hydrothermal reactor experiment simulating complex organic synthesis and a simulated fly-through capture experiment of organic-bearing microparticles using silica aerogels, followed by subsequent analysis. Both experiments employ peptide as a plausible organics existing in Encleadus plume particles produced in its subsurface ocean. Recent laboratory hydrothermal experiments and a theoretical model on silica saturation indicated an on going hydrothermal reactions in subsurface Enceladus ocean. Given the porous chondritic origin of the core, it is likely that organic compounds originated by radiation chemistry such as amino acid precursors could have been provided, leached, and altered through widespread water-rock interactions. By using the same laboratory experimental setup from the latest water-rock interaction study, we performed amino acid polymerization experiments for 144 days and monitored the organic complexity changing over time. So far over 3,000 peaks up to the size of greater than 600 MW were observed through the analysis of capillary electrophoresis time-of-flight mass spectrometry (CE-TOF-MS) with an indication of amino acid derivatives and short peptides. Generally abiotic polymerization of enantiomeric amino acids results in forming stereoisomeric peptides with identical molecular weight and formula as opposed to homochiral biopolymers. Assuming Enceladus plume particles may contain a mixture of stereoisomeric peptides, we were able to distinguish 16 of the 17 stereoisomeric tripeptides as a test sample using capillary electrophoresis (CE) under optimized conditions. We further conducted Enceladus plume fly-through capture experiment by accelerating peptides soaked in rock particles up to a speed of 5.7 km/s and capturing with originally developed hydrophobic silica aerogels. Direct peptide extraction with acetonitrile-water followed by CE analysis led to detection of only but two stereoisomeric acidic peptide peaks, presenting the first run-through hypervelocuty impact sample analysis targeting peptides as key molecule to to understand the ongoing astrobiology on Enceladus

    A novel three-unit tRNA splicing endonuclease found in ultrasmall Archaea possesses broad substrate specificity

    Get PDF
    tRNA splicing endonucleases, essential enzymes found in Archaea and Eukaryotes, are involved in the processing of pre-tRNA molecules. In Archaea, three types of splicing endonuclease [homotetrameric: α4, homodimeric: α2, and heterotetrameric: (αβ)2] have been identified, each representing different substrate specificity during the tRNA intron cleavage. Here, we discovered a fourth type of archaeal tRNA splicing endonuclease (ε2) in the genome of the acidophilic archaeon Candidatus Micrarchaeum acidiphilum, referred to as ARMAN-2 and its closely related species, ARMAN-1. The enzyme consists of two duplicated catalytic units and one structural unit encoded on a single gene, representing a novel three-unit architecture. Homodimeric formation was confirmed by cross-linking assay, and site-directed mutagenesis determined that the conserved L10-pocket interaction between catalytic and structural unit is necessary for the assembly. A tRNA splicing assay reveal that ε2 endonuclease cleaves both canonical and non-canonical bulge–helix–bulge motifs, similar to that of (αβ)2 endonuclease. Unlike other ARMAN and Euryarchaeota, tRNAs found in ARMAN-2 are highly disrupted by introns at various positions, which again resemble the properties of archaeal species with (αβ)2 endonuclease. Thus, the discovery of ε2 endonuclease in an archaeon deeply branched within Euryarchaeota represents a new example of the coevolution of tRNA and their processing enzymes

    Genomic Heterogeneity in a Natural Archaeal Population Suggests a Model of tRNA Gene Disruption

    Get PDF
    Understanding the mechanistic basis of the disruption of tRNA genes, as manifested in the intron-containing and split tRNAs found in Archaea, will provide considerable insight into the evolution of the tRNA molecule. However, the evolutionary processes underlying these disruptions have not yet been identified. Previously, a composite genome of the deep-branching archaeon Caldiarchaeum subterraneum was reconstructed from a community genomic library prepared from a C. subterraneum–dominated microbial mat. Here, exploration of tRNA genes from the library reveals that there are at least three types of heterogeneity at the tRNAThr(GGU) gene locus in the Caldiarchaeum population. All three involve intronic gain and splitting of the tRNA gene. Of two fosmid clones found that encode tRNAThr(GGU), one (tRNAThr-I) contains a single intron, whereas another (tRNAThr-II) contains two introns. Notably, in the clone possessing tRNAThr-II, a 5′ fragment of the tRNAThr-I (tRNAThr-F) gene was observed 1.8-kb upstream of tRNAThr-II. The composite genome contains both tRNAThr-II and tRNAThr-F, although the loci are >500 kb apart. Given that the 1.8-kb sequence flanked by tRNAThr-F and tRNAThr-II is predicted to encode a DNA recombinase and occurs in six regions of the composite genome, it may be a transposable element. Furthermore, its dinucleotide composition is most similar to that of the pNOB8-type plasmid, which is known to integrate into archaeal tRNA genes. Based on these results, we propose that the gain of the tRNA intron and the scattering of the tRNA fragment occurred within a short time frame via the integration and recombination of a mobile genetic element

    Nematode-specific tRNAs that decode an alternative genetic code for leucine

    Get PDF
    Class II transfer RNAs (tRNAs), including tRNALeu and tRNASer, have an additional stem and loop structure, the long variable arm (V-arm). Here, we describe Class II tRNAs with a unique anticodon corresponding to neither leucine nor serine. Because these tRNAs are specifically conserved among the nematodes, we have called them ‘nematode-specific V-arm-containing tRNAs’ (nev-tRNAs). The expression of nev-tRNA genes in Caenorhabditis elegans was confirmed experimentally. A comparative sequence analysis suggested that the nev-tRNAs derived phylogenetically from tRNALeu. In vitro aminoacylation assays showed that nev-tRNAGly and nev-tRNAIle are only charged with leucine, which is inconsistent with their anticodons. Furthermore, the deletion and mutation of crucial determinants for leucylation in nev-tRNA led to a marked loss of activity. An in vitro translation analysis showed that nev-tRNAGly decodes GGG as leucine instead of the universal glycine code, indicating that nev-tRNAs can be incorporated into ribosomes and participate in protein biosynthesis. Our findings provide the first example of unexpected tRNAs that do not consistently obey the general translation rules for higher eukaryotes
    corecore