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Abstract

Understanding the mechanistic basis of the disruption of tRNA genes, as manifested in the intron-containing and split
tRNAs found in Archaea, will provide considerable insight into the evolution of the tRNA molecule. However, the
evolutionary processes underlying these disruptions have not yet been identified. Previously, a composite genome of the
deep-branching archaeon Caldiarchaeum subterraneum was reconstructed from a community genomic library prepared
from a C. subterraneum–dominated microbial mat. Here, exploration of tRNA genes from the library reveals that there are at
least three types of heterogeneity at the tRNAThr(GGU) gene locus in the Caldiarchaeum population. All three involve
intronic gain and splitting of the tRNA gene. Of two fosmid clones found that encode tRNAThr(GGU), one (tRNAThr-I) contains
a single intron, whereas another (tRNAThr-II) contains two introns. Notably, in the clone possessing tRNAThr-II, a 59 fragment
of the tRNAThr-I (tRNAThr-F) gene was observed 1.8-kb upstream of tRNAThr-II. The composite genome contains both tRNAThr-II

and tRNAThr-F, although the loci are .500 kb apart. Given that the 1.8-kb sequence flanked by tRNAThr-F and tRNAThr-II is
predicted to encode a DNA recombinase and occurs in six regions of the composite genome, it may be a transposable
element. Furthermore, its dinucleotide composition is most similar to that of the pNOB8-type plasmid, which is known to
integrate into archaeal tRNA genes. Based on these results, we propose that the gain of the tRNA intron and the scattering
of the tRNA fragment occurred within a short time frame via the integration and recombination of a mobile genetic
element.
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Introduction

Transfer RNA (tRNA) is a small RNA molecule that plays a key

role in protein biosynthesis. A cloverleaf secondary structure and

L-shaped tertiary structure are well-known features of mature

tRNAs that are strictly conserved across all three domains of life:

Archaea, Bacteria, and Eukarya [1,2]. However, diverse arrangements

of the genes encoding tRNAs have been reported. In these cases,

the tRNA genes are never directly transcribed into a contiguous

tRNA but instead require processing by splicing to form the

standard tRNA structure. Interruption by a single intron is the

most common cause of tRNA-gene disruption in archaeal and

eukaryotic genomes [3,4]. Although the tRNA intron is most often

inserted between nucleotides 37 and 38 (37/38) of the tRNA gene,

tRNA genes containing non-canonical introns in various positions

have recently been reported [5], as have tRNA genes containing as

many as three introns [5,6,7]. In Archaea, a more unusual tRNA

arrangement, the so-called ‘split tRNA’, has been reported. This is

produced by the trans splicing of two or three pieces of RNA

transcribed from different genes [8,9,10]. Each member of the

split-tRNA pair contains a flanking leader sequence at either the 59

or 39 end, and these form complementary RNA sequences that

hybridize in the cell. The intron-containing tRNA and the split

tRNA share a common structural motif, called the ‘bulge–helix–

bulge’, at the intron/leader–exon boundary. This motif is

recognized by tRNA splicing endonucleases, suggesting that the

intron-containing tRNA and the split tRNA are evolutionarily

related [8,9,10,11,12,13].

The discovery of disrupted tRNA genes has introduced the

challenge of understanding when and why these complex

processing pathways for tRNA emerged, and how they have

affected tRNA gene evolution. In Archaea, many mobile genetic

elements, such as conjugative plasmids and viruses, have been

reported to integrate into the host genome via site-specific

recombination events that occur at short homologous regions.

Owing to their highly conserved nature, tRNA genes are frequent
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target sites for integration [14,15,16]. Randau and Söll proposed

that integration events are one of the possible evolutionary

pressure causing the disruption of tRNA to exist as a disrupted

gene [17], and argued that intron gain and tRNA fragmentation

will prevent recombination if the disruption occurs at the

attachment site for viral or plasmid DNA in the host chromosome.

Such archaeal mobile elements have been predominantly isolated

from geothermal environments [15,18,19], which are also known

as the habitats of tRNA-intron-rich members of the archaeal

phylum Crenarchaeota. However, there is no direct evidence of an

evolutionary relationship between disrupted tRNA genes and the

integration of mobile elements.

Previously, a metagenomic (community genomic) library

consisting of 5,280 fosmid clones was constructed from a Hot

Water Crenarchaeotic Group I (HWCGI)-dominated microbial-

mat community collected from a geothermal water stream in a

subsurface Japanese gold mine [20,21]. The HWCGI comprises

putative thermophiles known to occupy a relatively deep position

within the crenarchaeotic lineages, and could constitute the

candidate division Aigarchaerota [20,21,22]. From the library, we

reconstructed a composite genome for the uncultivated archaeon

Candidatus Caldiarchaeum subterraneum (,1.7 Mbp), a member of

the HWCGI (Aigarchaeota). We also reported 45 nonredundant

tRNA genes, which can decode all sense codons in the composite

genome [21]. Among these 45 tRNA genes, 13 are predicted to be

intron-containing tRNAs, and three of these 13 contain multiple

introns (tRNALeu[UAA], tRNAGlu[CUG], and tRNAThr[GGU]).

The tRNA introns are located not only at the canonical position

37/38, but also at various noncanonical positions, such as the D-

arm, V-arm, and T-arm of the tRNA, as has been observed in

other crenarchaeal species [7]. This suggests that C. subterraneum is

one of the tRNA-intron-rich archaea.

We further explored the tRNA genes from the community

genomic library to deepen our understanding of tRNA gene

disruption during evolution. The library is reported to contain

heterogeneous genomic fragments of C. subterraneum, which were

used for assembly of the composite genome [21]. A comparison of

these heterogeneous genomic fragments and the composite

genome revealed that there are at least three types of heterogeneity

at the tRNAThr(GGU) gene locus in the Caldiarchaeum population,

all of which involve intron gain and splitting of the tRNA gene.

We propose that this heterogeneity was generated by the

integration of mobile genetic elements. Here, based on sequence

evidence observed at the strain or sub-strain level in a natural

microbial community, we present a model describing a possible

mechanism responsible for the disruption of tRNA genes.

Results

Occurrence of two types of tRNAThr(GGU) genes and a
tRNAThr(GGU) fragment in a C. subterraneum population

Recently, we reported a tRNAThr(GGU) gene containing two

introns at nucleotide positions 24/25 and 45/46 (Figure 1A) in a

composite genome of C. subterraneum that was reconstructed from a

community genomic library prepared from a C. subterraneum–

dominated microbial-mat community [21]. During the recon-

struction of the composite genome, we found another

tRNAThr(GGU) gene containing only one intron at position 45/

46 (Figure 1B) in fosmid clone JFF006_G04. To distinguish these

two types of sequences hereafter, we defined the tRNAThr(GGU)

gene containing two introns found in the composite genome as

‘tRNAThr-II’, and the other as ‘tRNAThr-I’, reflecting the number

of introns they contain. Although we did not identify the tRNAThr-I

sequence in the composite genome of C. subterraneum following a

homology search, we did find a sequence fragment identical to the

59 half of tRNAThr-I (tRNAThr-F; Figure 1C). In Figure 1, the

nucleotide sequences of tRNAThr-II, tRNAThr-I, and tRNAThr-F are

shown with their upstream and downstream genomic regions.

Sequence comparison revealed that the sequence of the 59 region of

tRNAThr-I (nucleotide positions 1–27) and its upstream sequence are

identical to those of the corresponding regions in tRNAThr-F. The

39 region of tRNAThr-I (nucleotide positions 25–72) and its

downstream sequence are identical to those of the corresponding

regions in tRNAThr-II, except for a single-nucleotide difference in

the intron region. These observations strongly suggest that

tRNAThr-I is a fusion of tRNAThr-F and tRNAThr-II. We also

confirmed that, whereas the nucleotide sequence of the 59 region of

tRNAThr-F is identical to that of the corersponding region of

Figure 1. Sequences and secondary structures of the DNA regions encoding the tRNAThr(GGU) genes and a tRNAThr(GGU) fragment.
(A) tRNAThr (GGU) gene locus with two introns (tRNAThr-II) found in the composite genome of C. subterraneum. (B) tRNAThr(GGU) gene locus with one
intron (tRNAThr-I) found in clone JFF006_G04. (C) tRNAThr(GGU) fragment (tRNAThr-F) found in the composite genome. Positions in the tRNA are
numbered as described previously [2]. Nucleotides in the tRNA exon are shown in upper-case letters. Nucleotides conserved among A, B, and C,
between A and B, and between B and C are shown as red, blue, and green, respectively. Black triangles indicate the locations of introns. The predicted
anticodon is boxed. The 15-nt extensions at the 59 and 39 termini of the tRNA structures are defined randomly, and are not the actual leader or trailer
sequences of potential pre-tRNAs.
doi:10.1371/journal.pone.0032504.g001
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tRNAThr-I(GGU), there are three single-nucleotide mismatches

between both of these sequences and the corresponding 59 regions

in either tRNAThr(UGU) or tRNAThr(CGU).

We further analyzed the nucleotide sequence of the JFF006_

G04 clone to clarify the evolutionary relationships between

tRNAThr-II, tRNAThr-I, and tRNAThr-F. Intriguingly, we found

that clone JFF006_G04 is a hybrid sequence consisting of two

distantly located regions in the composite genome of C.

subterraneum, and that pairwise matches with these regions show

over 98.6% sequence similarity in a 4.3 kb stretch upstream of the

tRNAThr-I gene and over 98.5% sequence similarity in a 7.2 kb

region downstream from the tRNAThr-I gene (Figure 2). The high

sequence similarity extending over 10 kb of the composite genome

strongly suggests that the clone was derived from a C. subterraneum

strain or at least from a closely related (sub-)species. Moreover,

because almost all archaeal chromosomes encode nonredundant

tRNA genes [23], the presence of tRNAThr-II and tRNAThr-I

demonstrates the existence of heterogeneity in the tRNA genes in

the Caldiarchaeum population. Therefore, we defined the heteroge-

neous tRNAThr(GGU) gene loci found in the composite genome

and in JFF006_G04 as type A and type B, respectively (Figure 2).

To clarify whether other heterogeneous sequences encoding the

tRNAThr gene exist in the Caldiarchaeum population, we collected

additional fosmid clones that represent the tRNAThr(GGU) gene

locus in the genomic library and determined their sequences. In

this way, we identified another heterogeneous fosmid clone,

JFF014_A09 (defined as type C), which contains two distinct

genomic regions of the composite genome, with over 99.0% and

99.3% sequence similarity (Figure 2). Although clone JFF014_A09

harbors a region identical to that found in clone JFF006_G04, the

tRNAThr-I gene is not present in clone JFF014_A09. Instead,

tRNAThr-F and tRNAThr-II, which are distantly located in the

composite genome, are found close to one another in clone

JFF014_A09, being separated by an interval of only approximately

1,800 bp (shown as black and pink gradations in Figure 2). In

clone JFF014_A09, a 545-bp sequence (shown as a pink gradated

region in Figure 2) was mapped to both of the distinct tRNAThr

loci in the composite genome (Figure 2), suggesting that this

overlapping sequence may be a recombination region. To avoid

misinterpretation caused by cloning artifacts, we obtained and

analyzed at least two independent fosmid clones for each tRNA

type (Table S1). Based on the results, we concluded that the

proposed genome structures segregated individually in the

microbial population.

Characterization of the insertion sequence at the
tRNAThr(GGU) gene locus

Because clone JFF014_A09 contains a putative recombination

region that separates tRNAThr-II and tRNAThr-F, this clone

provides a valuable key to understanding how genomic heteroge-

neity was generated around the tRNAThr(GGU) gene locus in the

Caldiarchaeum population. As shown in Figure 3A, a comparison of

clones JFF006_G04 and JFF014_A09 revealed that a 1,868-bp

sequence extending from the end of tRNAThr-F to nucleotide

position 27 of tRNAThr-II (including the intron located at positions

24/25) in clone JFF014_A09 is an insertion sequence. As

described above, the putative recombination region (545 bp) is

included in this insertion sequence (defined as region ‘a’). We also

found an open reading frame (ORF) of 813 bp (defined as region

‘b’) encoded immediately downstream of region ‘a’ (Figure 3A).

Interestingly, protein family analysis using SVMProt software [24]

suggested that the ‘b’ protein belongs to families of proteins that

function in DNA-binding and/or DNA recombination, with an

88.1%–89.3% probability of correct classification of protein

function.

A homology search of regions ‘a’ and ‘b’ (a nucleotide search for

region ‘a’ and an amino acid search for region ‘b’) against the

composite genome of C. subterraneum revealed the existence of

several similar nucleotide and amino acid sequences (Figure 3B).

In the composite genome, six regions (a1–a6) show pairwise

Figure 2. Genomic heterogeneity in tRNAThr(GGU) gene loci in the composite genome and cloned sequences. Schematic
representation of the composite genome of C. subterraneum and the nucleotide sequences of clones JFF006_G04 and JFF014_A09 are shown (types
A, B, and C, respectively). Homologous regions between the composite genome and the cloned sequences are shown in the same colors, and the
similarity scores (%) against the corresponding regions in the composite genome are indicated on the cloned sequences. The genomic positions of
the two distantly located regions in the composite genome are shown as red and blue numbers.
doi:10.1371/journal.pone.0032504.g002

Disruption of Archaeal tRNA Genes

PLoS ONE | www.plosone.org 3 March 2012 | Volume 7 | Issue 3 | e32504



matches to region ‘a’ with an E-value,102100, with over 80%

coverage (Figure S1). In contrast, no significant alignment of

region ‘b’ was detectable at the nucleotide level, although seven

(b1–b7) protein sequences from among the 1,793 ORFs in the

composite genome showed pairwise matches to the ‘b’ protein with

an E-value,10220, with over 80% coverage (Figure S2).

Interestingly, five of these seven ‘b’ regions were coupled to an

‘a’ region (Figure 3B). These results suggest that the genomic

region consisting of ‘a’ and ‘b’ sequences is a transposable element.

Furthermore, we analyzed the genes flanking the insertion

sequences and found that the 59 upstream sequence (nucleotide

positions 503442–503515) of the a3b4 region (Figure 3B) encodes

another tRNAThr, although most of the other flanking genes

turned out to encode hypothetical proteins. This tRNAThr

contains a CGU anticodon and no intronic sequence in its gene.

However, there is no tRNAThr(CGU) fragment in the composite

genome. Based on the nucleotide comparisons, it is possible to

distinguish fragmented tRNAThr(GGU) from tRNAThr(CGU).

This finding suggests that among tRNAs, tRNAThr may be a

specific target for insertion sequences.

We also conducted BLAST analysis against all fosmid clones to

see whether similar genomic alterations have occurred in other ‘a’

and ‘b’ regions. The analysis showed no such alterations, except at

tRNAThr loci (data not shown). In other words, tRNAThr loci are

the only loci that show these types of frequent genomic alterations.

We also analyzed all tRNA loci in the C. subterraneum fosmid clones

and found again that tRNAThr is the only tRNA that shows this

type of genomic heterogeneity. Based on previous reports of

tRNA-specific recombination by viruses and plasmids [14,25], we

propose that recombination driven by these agents may also be

responsible for archaeal tRNAThr-specific recombination.

Next, we performed dinucleotide bias analysis [26] to further

determine the characteristics of the insertion sequence. It has

previously been reported that the dinucleotide compositional

profile is relatively constant throughout the genome, except in

regions that were recently acquired via horizontal transfer [26,27].

Therefore, we calculated the average absolute dinucleotide relative

abundance difference (the so-called ‘d*-value’, which indicates the

difference in the dinucleotide compositions of two DNA sequences)

between the whole composite genome of C. subterraneum and the

insertion sequence found in clone JFF014_A09 (Figure 4A). The

d*-value showed a significantly higher score than the average of

the d*-values between the composite genome and each of the

computationally generated 2-kb genomic segments spanning the

composite genome with 1-kb overlaps (Figure 4A). Given that a

high d*-value indicates a large difference in the dinucleotide

compositions of two sequences, this result suggests that the

insertion sequence was acquired recently.

If this speculation is true, then it introduces questions

concerning the origin of this sequence. To investigate this, we

calculated the d*-values between the insertion sequence and each

of 180 various types of DNA sequences, including 85 archaeal

chromosomes and 95 archaeal plasmids (Table S2). Many

conjugative plasmids that integrate into the tRNA genes of the

host genome have been reported from members of the archaeal

order Sulfolobales [15,28]. They usually encode a ‘pNOB8-type’

integrase that acts as a recombinase. Therefore, we initially

identified the plasmids encoding pNOB8-type integrases from 95

archaeal plasmids, and then observed the relative distributions of

their d*-values (Figure 4B). In this way, we identified 10 plasmids

encoding pNOB8-type integrases, all of which occur in the order

Sulfolobales. Surprisingly, eight of these 10 plasmids were ranked in

the top 18 for d*-values among the 180 DNAs, so that they

constituted more than 40% of the top 10% bin in Figure 4B.

Although other types of DNA sequences that occur in the

Sulfolobales also showed a clear bias towards higher ranking, the

pNOB8-type plasmids all showed lower ranking than the other

Sulfolobales DNAs (Figure 4B). We also analyzed the genomes of

archaeal viruses known to target the tRNA genes and a provirus-

like sequence that is found in the composite genome of C.

subterraneum. However, there was no significant bias in their d*-

values when compared with the insertion sequence (data not

Figure 3. Characterization of the insertion sequence found at the tRNAThr gene locus. (A) Schematic representations of clones JFF006_G04
and JFF014_A09, and the enlarged putative insertion sequence. The colors correspond to those used in Figure 2. Homologous regions between the
cloned sequences are linked by a dashed line and the similarity scores are shown. The two regions ‘a’ (pink) and ‘b’ (blue arrow) are shown, along with
their respective lengths. (B) Regions homologous to the ‘a’ and ‘b’ sequences (at the nucleotide level for ‘a’ and amino acid level for ‘b’) are mapped
to the schematic representation of the composite genome, and each is numbered (a1–a6 or b1–b7).
doi:10.1371/journal.pone.0032504.g003
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shown). This suggests that the insertion sequence has been laterally

transferred from a plasmid encoding a pNOB8-type integrase, and

previously found in the Sulfolobales crenarchaeotes. However, the

pH in our environmental sample was close to neutral and the

environment was quite different from that of Sulfolobales, which

lives under acidic conditions. Therefore, direct interaction

between C. subterraneum and Sulfolobales seems unlikely. We also

considered the possibility that pNOB-type plasmids or related

plasmids are widely distributed among species. However, there is

little information to support or contradict this notion because the

plasmids that have been analyzed are mainly derived from

members of Sulfolobales. In addition, the plasmid pGT5 from

Pyrococcus abyssi GE5 was ranked second out of 180 DNAs in the

d*-value analysis. Thus, we suggest that more archaeal plasmid

sequences are required to address the exact plasmid family that

harbors the insertion sequences in the Caldiarchaeum genome.

Discussion

In this study, we identified genomic heterogeneity at the

tRNAThr(GGU) gene locus in a naturally occurring Caldiarchaeum

population. This observation led us to consider the process by

which disrupted tRNA genes, including multiple-intron-containing

tRNAs [5,6,7] and split tRNAs [8,9,10], are generated in the

domain Archaea. To examine the mechanism of tRNA gene

disruption, we formulated a model explaining the evolutionary

relationships among clones encoding the tRNAThr(GGU) gene

locus identified in this study (Figure 5). As described above, we

found heterogeneous sequences at the tRNAThr(GGU) gene locus,

and some of the cloned fragments consisted of two distantly

located regions in the composite C. subterraneum genome (Figure 2).

Moreover, the similarities between these sequences and the

corresponding regions in the composite genome were greater

than 98%, even though the pairwise matches extended over

11,000 bp. This strongly suggests that the sequences of the clones

are derived from the genome of C. subterraneum or closely related

(sub-)species. Of the 21 16S rRNA gene sequences we isolated

from a metagenomic library prepared from a naturally occurring

Figure 4. Dinucleotide bias analysis of the insertion sequence. (A) The average absolute dinucleotide relative abundance difference (d*-
value) for the composite genome and the insertion sequence (1,868 bp) was compared with the d*-values for the composite genome and each of the
computationally generated 2-kb genomic segments (n = 1,681). An error bar represents the standard deviation. Statistical significance was
determined by calculating the proportion of d*-values for the 2-kb segments that were greater than or equal to that of the insertion sequence. (B)
Relative abundances of various types of archaeal DNA sequences, ranked according to the similarity of their dinucleotide content to the insertion
sequence. In total, 180 DNA sequences were sorted in ascending order of their d*-values and divided into 10 bins. The sequences in each bin were
categorized into five groups: plasmids encoding pNOB8-type integrases (pink, n = 10); plasmids in the order Sulfolobales (red, n = 11); chromosomes in
the order Sulfolobales (dark red, n = 11); other plasmids (dark grey, n = 74), and other chromosomes (black, n = 74). See Table S2 for the complete list
of all 180 DNAs.
doi:10.1371/journal.pone.0032504.g004

Figure 5. Model explaining the intron gain and fragmentation
of the tRNA gene. A model for the intron gain and fragmentation
processes of tRNA genes among the heterogeneous C. subterraneum
genomes through site-specific recombination of a mobile element and
homologous recombination. Dotted lines indicate the genomes of
putative heterogeneous C. subterraneum strains. The tRNAThr gene, a
fragment of it, and its intron are denoted by a red arrow, red rectangle,
and yellow line, respectively (not to scale). The colors correspond to
those in Figure 2. Whereas int represents the integrase gene, attP and
attB denote the attachment sites for integration.
doi:10.1371/journal.pone.0032504.g005
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Caldiarchaeum population, only two of them were designated as

‘Caldiarchaeum type II’. Whereas these two exhibit 96.6% similarity

to the C. subterraneum sequence, no mismatch residues were found

among the remaining 19 of C. subterraneum 16S rRNA gene exon

sequences [21]. Given the higher similarity of homologous regions

found in the tRNAThr loci (.98.5%) compared to the similarity

between the 16S rRNA genes of C. subterranuem and Caldiarchaeum

type II (96.6%), the abundances of three tRNAThr locus types are

inconsistent with the abundance of clones of the Caldiarchaeum type

II 16S rRNA gene in the metagenomic library. Furthermore,

based on the typical criteria for species classification [29,30], we

speculate that the same species can have heterogeneous tRNA

genomic loci. Nonetheless, we cannot eliminate the possibility,

however slight, that the heterogeneous tRNAs are derived from

distinct but extremely closely related species. Finally, because most

archaeal chromosomes encode nonredundant tRNA genes [23],

the presence of these clones indicates that at least three types of

heterogeneous chromosomes exist separately in the C. subterraneum

or closely related (sub-)species that harbor same 16S rRNA gene

exon sequences (Figure 5). This also suggests that intron gain or

loss in tRNA genes and the scattering of tRNA fragments to

remote parts of the genome possibly occurred over a short time

period within a single species, or among two extremely closely

related species during evolution.

How might these heterogeneities have arisen? We considered

that the integration of a mobile genetic element might have been a

key factor in this phenomenon. In Archaea, many mobile elements,

such as conjugative plasmids and viruses, have been reported to

integrate into the host chromosome by site-specific recombination

This integration occurs within short homologous regions between

the host DNA (known as attB sites) and attP sites within the plasmid

or viral DNA [17]. Intriguingly, the 59 or 39 terminus of the tRNA

sequence is the typical attachment site. For example, the attP site of

the Sulfolobus spindle virus SSV1 is a 44-bp sequence homologous

to the 39 terminus of the host tRNAArg gene [14,25]. If the virus

integrates into the tRNAArg gene, a reconstituted tRNAArg gene

and a 44-bp direct repeat of the tRNAArg gene are generated at

the integration borders of the SSV1 provirus. In such processes,

a plasmid- or virus-encoded integrase acts as a site-specific

recombinase [15]. Archaeal integrases have previously been

classified as being of either the SSV-type or the pNOB8-type

[31]. In a mobile element that encodes an SSV-type integrase

(mostly found in viruses), the sequence of the attP site is included in

the gene encoding the integrase. Therefore, upon its integration,

the integrase gene is partitioned into two sequences, each encoding

either the N- or C-terminal portion of the integrase, which overlap

with the reconstituted tRNA gene and the direct repeat [14,25]. In

contrast, because the gene encoding the pNOB8-type integrase

(mostly encoded on plasmids) separates the attP site, the host

genome contains an intact integrase gene located immediately

adjacent to the reconstituted tRNA gene on the same strand [15].

We noted that the integration borders of pNOB8-type plasmids

bear a striking resemblance to this feature of JFF014_A09. First, in

clone JFF0014_A09, tRNAThr-F, which is homologous to the 59

terminus of the tRNAThr(GGU) sequence, is located upstream of

the tRNAThr-II gene, forming a direct repeat of the tRNA

(Figure 2). Second, a comparison of clones JFF014_A09 and

JFF006_G04 revealed an insertion sequence that constitutes a

genomic region flanked by direct repeats of the tRNA sequence

(Figure 3A). Third, in the insertion sequence, region ‘b’, which

encodes a putative DNA recombinase, is immediately adjacent to

the tRNAThr-II gene on the same strand. Therefore, because the

sequence encoding the putative DNA recombinase does not

overlap with the tRNA sequences, we deduced that the insertion

sequence in JFF014_A09 might be derived from a pNOB8-type

plasmid. This speculation is further supported by the observation

that the dinucleotide composition of the insertion sequence is

similar to that of some conjugative plasmids encoding pNOB8-

type integrases (Figure 4B).

We observed the gain of an extra intron at position 24/25 of the

tRNAThr(GGU) gene in the C. subterraneum genome. Recently, it

has been reported that base mismatches between the attP site and

attB site are inherited in reconstituted tRNA genes [16,17]. This

suggests that the recombination of two similar sequences, one of

which includes a redundant sequence such as a tRNA intron, may

occur during the integration of a mobile element. Our study

confirms this possibility, in that the tRNA intron was derived from

a mobile element that integrated via site-specific recombination

between an attP sequence containing an intron and an attB

sequence that did not contain an intron (Figure 5). In the host

archaeal genome, the gain of an intron in the attB site of tRNA

gene might be a protective mechanism against the invasion of

conjugative plasmids and viruses [17]. The genomic heterogeneity

in the archaeal population found in this study also suggests that the

addition of an intron by mobile elements could provide an

advantage to the integrated element itself, preventing further

invasion by other elements.

The presence of region ‘a’ in the insertion sequence of

JFF014_A09 supports the occurrence of a subsequent homologous

recombination event after the integration of the mobile element.

Because the sequence of region ‘a’ is found in six regions of the

composite genome, we inferred that the ‘a’ sequence is a

transposable element. We speculate that the homologous recom-

bination that occurred among these homologous regions, one of

which is located between the tRNA gene and a tRNA fragment

sequence (e.g., JFF014_A09 in Figure 5), possibly created the split

tRNA gene halves that are widely scattered in the genome

(Figure 5).

Previous investigations of the sequence evolution of disrupted

tRNA genes have focused on comparative genomics at the species

level [13,23,32]. In this study, based on population genomics of a

specific archaeal lineage within a subsurface microbial community,

we have identified novel sequences that suggest that intron gain

and the splitting of a tRNA gene have occurred within a species or

sub-species. The unusually low diversity within this Caldiarchaeum

community, in which C. subterraneum predominated, most likely

resulted from a population bottleneck [33] when this facultatively

aerobic microbial community arose at a mine site. Considering the

extremely homogeneous genomic sequences of the genome

fragments of Caldiarchaeum population predominated by C.

subterraneum, the C. subterraneum community found in the microbial

mat might have originated from one or a few cells, and the

genomic diversity observed in this population is probably the result

of this natural long-term continuous culture experiment. Metage-

nomic analysis targeting microbial communities produced by

natural or artificial population bottlenecks should provide further

information not only regarding the evolution of disrupted tRNAs,

but also regarding other processes of genomic differentiation.

Therefore, it should be very useful to collect as many metagenomic

samples as possible from various microbial habitats to verify the

proposed model of tRNA gene disruption.

Conclusions
We identified three types of heterogeneity at the

tRNAThr(GGU) gene locus in a Caldiarchaeum population collected

from a microbial mat isolated from a geothermal water stream of a

sub-surface gold mine. We suggest that this heterogeneity could be

generated by insertion of a transposable element and subsequent
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homologous recombination by the DNA recombinase encoded in

this transposed element. Furthermore, the results also suggested

that intron gain or loss by tRNA and the scattering of tRNA

fragments to remote parts of the genome possibly occurred over a

short time period within a single species, or among two extremely

closely related species. This enabled us to propose a model to

explain the evolution of tRNA.

Materials and Methods

Fosmid library, clones, and DNA sequences
The fosmid library was constructed from an unusual microbial

community dominated by uncultured archaeotes, and the DNA of

the archaeal genome fragments was sequenced as previously

described [20,21]. In brief, a metagenomic library consisting of

5,280 fosmid clones was constructed from high-molecular-weight

DNA (fragments as large as 50 kbp), which was prepared from a

microbial mat taken from a geothermal water stream at a depth of

320 m from the ground surface in a Japanese gold mine. All the

fosmid clones in the library were extracted from an Escherichia coli

culture, and the paired-end sequences of each cloned genomic

fragment were sequenced. The putative archaeal genome

fragments were then analysed using both a GS20 pyrosequencer

and by Sanger sequencing. The composite circular genomic

sequence of C. subterraneum (1,680,938 bp) was assembled from a

set of 62 complete or partial fosmid sequences, and an additional

28 complete or partial fosmid sequences (including JFF006_G04)

derived from C. subterraneum were also obtained [21]. In addition to

the C. subterraneum SSU rRNA ribotype (19 clones), we found two

ribotypes of an archaeal SSU rRNA gene in the library. Two

clones were derived from Caldiarchaeum sp. (Caldiarchaeum ribotype

II) and three clones were derived from Nistrosocaldus sp. [21]. The

similarity of the SSU rRNA gene between the two Caldiarchaeum

species was 96.6%.

In this study, we selected an additional fosmid clone,

JFF014_A09, which is predicted to encode the tRNAThr(GGU)

gene locus of C. subterraneum, but consists of two genomic regions

shown by paired-end-read information to be distantly located on

the composite genome of C. subterraneum. Following the successful

PCR amplification of tRNAThr(GGU) using gene-specific primers,

a partial sequence of clone JFF014_A09, including the boundary

of the two genomic regions, was determined using an ABI 3100

DNA Sequencer (Applied Biosystems). The sequence was

assembled by BLASTN analysis. We obtained at least two

independent fosmid clones for each tRNA type, and sequence

data for these clones has been deposited in the DDBJ/EMBL/

GenBank database (Table S1).

We have a contract with a mining company about the sampling

in a subsurface mine. The contract specifies that the name of the

company cannot be disclosed when this manuscript is published.

Prediction of tRNA genes and tRNA fragments
tRNA genes were predicted using tRNAscan-SE [34], with the

Archaea-specific search mode and SPLITSX [6], using the

following parameters: 2p 0.55, 2f 0, 2h 3. The fragmented

tRNA was subjected to a BLASTN search with the default

parameters. The query term used was the sequence found in clone

JFF006_G04 (that is, the sequence of the tRNAThr(GGU) gene

containing one intron).

Characterization of the insertion sequence
An 813 bp ORF in clone JFF014_A09 (defined as region ‘b’)

was predicted using the Glimmer program (http://www.ncbi.nlm.

nih.gov/genomes/MICROBES/glimmer_3.cgi). Its protein func-

tion was predicted with SVMProt [24], a software program used

extensively for the Support Vector Machine–mediated classifica-

tion of proteins into functional families based on protein properties

such as amino acid composition, hydrophobicity, charge, and

secondary structure. A homology search of the 545-bp nucleotide

sequence found in clone JFF014_A09 (defined as region ‘a’)

against the composite genome of C. subterraneum was performed

using BLASTN, with parameters 2q 21, 2X 100, 2e 102100, to

identify pairwise matches with more than 80% coverage. The

amino acid sequence of region ‘b’ was compared with all 1,793

proteins encoded in the composite genome of C. subterraneum using

BLASTP, with the parameter 2e 10220 selected to identify

pairwise matches with more than 80% coverage.

Analysis of dinucleotide compositions
Measurement of dinucleotide compositional differences

among DNA sequences. The average absolute dinucleotide

relative abundance difference (d*-value), which represents dif-

ferences in dinucleotide compositions of two DNA sequences, was

calculated as previously described [26]. Briefly, dinucleotide

relative abundance values (r*XY) are defined as r*XY = fXY/

(fX6fY), where fX and fXY denote the frequencies of the

mononucleotide X and the dinucleotide XY, respectively. Both

fX and fXY are computed from both the sense and reverse

complement sequence. The d*-value is given by d*(f, g) = 1/166g
| rXY*(f) 2 rXY*(g)|61000, where rXY*(f) and rXY*(g) are the

abundance values calculated for the input sequences ‘f’ and ‘g’,

respectively.

Data set. In total, 180 complete sequences, including 85

archaeal chromosomes and 95 archaeal plasmids, were

downloaded from the NCBI web site (http://www.ncbi.nlm.

nih.gov/sites/genome/) (September 2010). We selected 10 of the

95 archaeal plasmids as pNOB8-type-integrase-encoding plas-

mids based on a previous report [15]. Selection was based on two

criteria. First, the plasmid needed to encode a tRNA fragment

.30 bp long. Second, the tRNA gene needed to be immediately

adjacent to a gene encoding a putative integrase similar to that

encoded in the plasmid pNOB8 (NCBI Protein accession num-

ber YP_145765.1; BLASTP E-value,10210). For the tRNA

fragment search, all 3,742 archaeal tRNA gene sequences

deposited in SPLITSdb [23] were used as query terms in a

BLASTN analysis that used default parameters. The entire set

of 180 DNA sequences (85 chromosomes, 10 plasmids encod-

ing a pNOB8-type integrase, and 85 other plasmids) is shown in

Table S2.

Supporting Information

Figure S1 Nucleotide sequence alignment of homolo-
gous ‘a’ regions in clone JFF014_A09 and the composite
genomes of C. subterraneum. A multiple sequence alignment

of seven homologous ‘a’ regions was performed using ClustalW 2.0

[35] with the default parameters. Asterisks indicate conserved

nucleotide positions. The designations ‘a’ and ‘a1–a6’ are as

defined in Figure 3. The numbers in parentheses indicate positions

in the composite genome of C. subterraneum.

(TIFF)

Figure S2 Protein sequence alignment of the putative
ORF encoded by region ‘b’ of clone JFF014_A09 and the
composite genomes of C. subterraneum. Amino acid

sequences were aligned using ClustalW 2.0 [35] with the default

parameters. Identical or similar amino acids are shown in the same

colors. Asterisks indicate identical residues at that position. Partly

conserved amino acids are indicated by dots, with two-dot regions
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having a higher degree of similarity than positions denoted with a

single dot. The designations ‘b’ and ‘b1–b7’ are defined as in

Figure 3. The gene ID for each ORF is shown in parentheses.

(TIFF)

Table S1 Independent fosmid clones reveal the genomic
heterogeneity of tRNAThr loci. (*) See Figure 2 for types of

tRNAThr. A single gene ID in a column corresponds to a full

nucleotide sequence or long partial nucleotide sequence of a

fosmid clone. Two gene IDs in a column correspond to 59 and 39

end nucleotide sequences of a fosmid clone, respectively.

(DOC)

Table S2 Summary of d*-values for 180 archaeal
chromosomes and plasmids. aPlasmids encoding pNOB8-

type integrases are underlined.

(DOC)
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