47 research outputs found

    Spatio-Temporal Gap Analysis of OBIS-SEAMAP Project Data: Assessment and Way Forward

    Get PDF
    The OBIS-SEAMAP project has acquired and served high-quality marine mammal, seabird, and sea turtle data to the public since its inception in 2002. As data accumulated, spatial and temporal biases resulted and a comprehensive gap analysis was needed in order to assess coverage to direct data acquisition for the OBIS-SEAMAP project and for taxa researchers should true gaps in knowledge exist. All datasets published on OBIS-SEAMAP up to February 2009 were summarized spatially and temporally. Seabirds comprised the greatest number of records, compared to the other two taxa, and most records were from shipboard surveys, compared to the other three platforms. Many of the point observations and polyline tracklines were located in northern and central Atlantic and the northeastern and central-eastern Pacific. The Southern Hemisphere generally had the lowest representation of data, with the least number of records in the southern Atlantic and western Pacific regions. Temporally, records of observations for all taxa were the lowest in fall although the number of animals sighted was lowest in the winter. Oceanographic coverage of observations varied by platform for each taxa, which showed that using two or more platforms represented habitat ranges better than using only one alone. Accessible and published datasets not already incorporated do exist within spatial and temporal gaps identified. Other related open-source data portals also contain data that fill gaps, emphasizing the importance of dedicated data exchange. Temporal and spatial gaps were mostly a result of data acquisition effort, development of regional partnerships and collaborations, and ease of field data collection. Future directions should include fostering partnerships with researchers in the Southern Hemisphere while targeting datasets containing species with limited representation. These results can facilitate prioritizing datasets needed to be represented and for planning research for true gaps in space and time

    Management of acoustic metadata for bioacoustics

    Get PDF
    Recent expansion in the capabilities of passive acoustic monitoring of sound-producing animals is providing expansive data sets in many locations. These long-termdata sets will allowthe investigation of questions related to the ecology of sound-producing animals on time scales ranging fromdiel and seasonal to inter-annual and decadal. Analyses of these data often span multiple analysts from various research groups over several years of effort and, as a consequence, have begun to generate large amounts of scattered acoustic metadata. It has therefore become imperative to standardize the types of metadata being generated. A critical aspect of being able to learn from such large and varied acoustic data sets is providing consistent and transparent access that can enable the integration of various analysis efforts. This is juxtaposed with the need to include new information for specific research questions that evolve over time. Hence, a method is proposed for organizing acoustic metadata that addresses many of the problems associated with the retention of metadata from large passive acoustic data sets. A structure was developed for organizing acoustic metadata in a consistent manner, specifying required and optional terms to describe acoustic information derived from a recording. A client-server database was created to implement this data representation as a networked data service that can be accessed from several programming languages. Support for data import froma wide variety of sources such as spreadsheets and databases is provided. The implementation was extended to access Internet-available data products, permitting access to a variety of environmental information types (e.g. sea surface temperature, sunrise/sunset, etc.) fromawide range of sources as if they were part of the data service. This metadata service is in use at several institutions and has been used to track and analyze millions of acoustic detections from marine mammals, fish, elephants, and anthropogenic sound sources.Publisher PDFPeer reviewe

    Toward a new data standard for combined marine biological and environmental datasets - expanding OBIS beyond species occurrences

    Get PDF
    The Ocean Biogeographic Information System (OBIS) is the world's most comprehensive online, open-access database of marine species distributions. OBIS grows with millions of new species observations every year. Contributions come from a network of hundreds of institutions, projects and individuals with common goals: to build a scientific knowledge base that is open to the public for scientific discovery and exploration and to detect trends and changes that inform society as essential elements in conservation management and sustainable development. Until now, OBIS has focused solely on the collection of biogeographic data (the presence of marine species in space and time) and operated with optimized data flows, quality control procedures and data standards specifically targeted to these data. Based on requirements from the growing OBIS community to manage datasets that combine biological, physical and chemical measurements, the OBIS-ENV-DATA pilot project was launched to develop a proposed standard and guidelines to make sure these combined datasets can stay together and are not, as is often the case, split and sent to different repositories. The proposal in this paper allows for the management of sampling methodology, animal tracking and telemetry data, biological measurements (e.g., body length, percent live cover, ...) as well as environmental measurements such as nutrient concentrations, sediment characteristics or other abiotic parameters measured during sampling to characterize the environment from which biogeographic data was collected. The recommended practice builds on the Darwin Core Archive (DwC-A) standard and on practices adopted by the Global Biodiversity Information Facility (GBIF). It consists of a DwC Event Core in combination with a DwC Occurrence Extension and a proposed enhancement to the DwC MeasurementOrFact Extension. This new structure enables the linkage of measurements or facts - quantitative and qualitative properties - to both sampling events and species occurrences, and includes additional fields for property standardization. We also embrace the use of the new parentEventID DwC term, which enables the creation of a sampling event hierarchy. We believe that the adoption of this recommended practice as a new data standard for managing and sharing biological and associated environmental datasets by IODE and the wider international scientific community would be key to improving the effectiveness of the knowledge base, and will enhance integration and management of critical data needed to understand ecological and biological processes in the ocean, and on land.Fil: De Pooter, Daphnis. Flanders Marine Institute; BélgicaFil: Appeltans, Ward. UNESCO-IOC; BélgicaFil: Bailly, Nicolas. Hellenic Centre for Marine Research, MedOBIS; GreciaFil: Bristol, Sky. United States Geological Survey; Estados UnidosFil: Deneudt, Klaas. Flanders Marine Institute; BélgicaFil: Eliezer, MenashÚ. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Fujioka, Ei. University Of Duke. Nicholas School Of Environment. Duke Marine Lab; Estados UnidosFil: Giorgetti, Alessandra. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Goldstein, Philip. University of Colorado Museum of Natural History, OBIS; Estados UnidosFil: Lewis, Mirtha Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; ArgentinaFil: Lipizer, Marina. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Mackay, Kevin. National Institute of Water and Atmospheric Research; Nueva ZelandaFil: Marin, Maria Rosa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; ArgentinaFil: Moncoiffé, Gwenaëlle. British Oceanographic Data Center; Reino UnidoFil: Nikolopoulou, Stamatina. Hellenic Centre for Marine Research, MedOBIS; GreciaFil: Provoost, Pieter. UNESCO-IOC; BélgicaFil: Rauch, Shannon. Woods Hole Oceanographic Institution; Estados UnidosFil: Roubicek, Andres. CSIRO Oceans and Atmosphere; AustraliaFil: Torres, Carlos. Universidad Autonoma de Baja California Sur; MéxicoFil: van de Putte, Anton. Royal Belgian Institute for Natural Sciences; BélgicaFil: Vandepitte, Leen. Flanders Marine Institute; BélgicaFil: Vanhoorne, Bart. Flanders Marine Institute; BélgicaFil: Vinci, Mateo. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Wambiji, Nina. Kenya Marine and Fisheries Research Institute; KeniaFil: Watts, David. CSIRO Oceans and Atmosphere; AustraliaFil: Klein Salas, Eduardo. Universidad Simon Bolivar; VenezuelaFil: Hernandez, Francisco. Flanders Marine Institute; Bélgic

    Network analysis of sea turtle movements and connectivity: A tool for conservation prioritization

    Get PDF
    Aim: Understanding the spatial ecology of animal movements is a critical element in conserving long-lived, highly mobile marine species. Analyzing networks developed from movements of six sea turtle species reveals marine connectivity and can help prioritize conservation efforts. Location: Global. Methods: We collated telemetry data from 1235 individuals and reviewed the literature to determine our dataset's representativeness. We used the telemetry data to develop spatial networks at different scales to examine areas, connections, and their geographic arrangement. We used graph theory metrics to compare networks across regions and species and to identify the role of important areas and connections. Results: Relevant literature and citations for data used in this study had very little overlap. Network analysis showed that sampling effort influenced network structure, and the arrangement of areas and connections for most networks was complex. However, important areas and connections identified by graph theory metrics can be different than areas of high data density. For the global network, marine regions in the Mediterranean had high closeness, while links with high betweenness among marine regions in the South Atlantic were critical for maintaining connectivity. Comparisons among species-specific networks showed that functional connectivity was related to movement ecology, resulting in networks composed of different areas and links. Main conclusions: Network analysis identified the structure and functional connectivity of the sea turtles in our sample at multiple scales. These network characteristics could help guide the coordination of management strategies for wide-ranging animals throughout their geographic extent. Most networks had complex structures that can contribute to greater robustness but may be more difficult to manage changes when compared to simpler forms. Area-based conservation measures would benefit sea turtle populations when directed toward areas with high closeness dominating network function. Promoting seascape connectivity of links with high betweenness would decrease network vulnerability.Fil: Kot, Connie Y.. University of Duke; Estados UnidosFil: Åkesson, Susanne. Lund University; SueciaFil: Alfaro Shigueto, Joanna. Universidad Cientifica del Sur; PerĂș. University of Exeter; Reino Unido. Pro Delphinus; PerĂșFil: Amorocho Llanos, Diego Fernando. Research Center for Environmental Management and Development; ColombiaFil: Antonopoulou, Marina. Emirates Wildlife Society-world Wide Fund For Nature; Emiratos Arabes UnidosFil: Balazs, George H.. Noaa Fisheries Service; Estados UnidosFil: Baverstock, Warren R.. The Aquarium and Dubai Turtle Rehabilitation Project; Emiratos Arabes UnidosFil: Blumenthal, Janice M.. Cayman Islands Government; Islas CaimĂĄnFil: Broderick, Annette C.. University of Exeter; Reino UnidoFil: Bruno, Ignacio. Instituto Nacional de Investigaciones y Desarrollo Pesquero; ArgentinaFil: Canbolat, Ali Fuat. Hacettepe Üniversitesi; TurquĂ­a. Ecological Research Society; TurquĂ­aFil: Casale, Paolo. UniversitĂ  degli Studi di Pisa; ItaliaFil: Cejudo, Daniel. Universidad de Las Palmas de Gran Canaria; EspañaFil: Coyne, Michael S.. Seaturtle.org; Estados UnidosFil: Curtice, Corrie. University of Duke; Estados UnidosFil: DeLand, Sarah. University of Duke; Estados UnidosFil: DiMatteo, Andrew. CheloniData; Estados UnidosFil: Dodge, Kara. New England Aquarium; Estados UnidosFil: Dunn, Daniel C.. University of Queensland; Australia. The University of Queensland; Australia. University of Duke; Estados UnidosFil: Esteban, Nicole. Swansea University; Reino UnidoFil: Formia, Angela. Wildlife Conservation Society; Estados UnidosFil: Fuentes, Mariana M. P. B.. Florida State University; Estados UnidosFil: Fujioka, Ei. University of Duke; Estados UnidosFil: Garnier, Julie. The Zoological Society of London; Reino UnidoFil: Godfrey, Matthew H.. North Carolina Wildlife Resources Commission; Estados UnidosFil: Godley, Brendan J.. University of Exeter; Reino UnidoFil: GonzĂĄlez Carman, Victoria. Instituto National de InvestigaciĂłn y Desarrollo Pesquero; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Harrison, Autumn Lynn. Smithsonian Institution; Estados UnidosFil: Hart, Catherine E.. Grupo Tortuguero de las Californias A.C; MĂ©xico. Investigacion, Capacitacion y Soluciones Ambientales y Sociales A.C; MĂ©xicoFil: Hawkes, Lucy A.. University of Exeter; Reino UnidoFil: Hays, Graeme C.. Deakin University; AustraliaFil: Hill, Nicholas. The Zoological Society of London; Reino UnidoFil: Hochscheid, Sandra. Stazione Zoologica Anton Dohrn; ItaliaFil: Kaska, Yakup. Dekamer—Sea Turtle Rescue Center; TurquĂ­a. Pamukkale Üniversitesi; TurquĂ­aFil: Levy, Yaniv. University Of Haifa; Israel. Israel Nature And Parks Authority; IsraelFil: Ley Quiñónez, CĂ©sar P.. Instituto PolitĂ©cnico Nacional; MĂ©xicoFil: Lockhart, Gwen G.. Virginia Aquarium Marine Science Foundation; Estados Unidos. Naval Facilities Engineering Command; Estados UnidosFil: LĂłpez-Mendilaharsu, Milagros. Projeto TAMAR; BrasilFil: Luschi, Paolo. UniversitĂ  degli Studi di Pisa; ItaliaFil: Mangel, Jeffrey C.. University of Exeter; Reino Unido. Pro Delphinus; PerĂșFil: Margaritoulis, Dimitris. Archelon; GreciaFil: Maxwell, Sara M.. University of Washington; Estados UnidosFil: McClellan, Catherine M.. University of Duke; Estados UnidosFil: Metcalfe, Kristian. University of Exeter; Reino UnidoFil: Mingozzi, Antonio. UniversitĂ  Della Calabria; ItaliaFil: Moncada, Felix G.. Centro de Investigaciones Pesqueras; CubaFil: Nichols, Wallace J.. California Academy Of Sciences; Estados Unidos. Center For The Blue Economy And International Environmental Policy Program; Estados UnidosFil: Parker, Denise M.. Noaa Fisheries Service; Estados UnidosFil: Patel, Samir H.. Coonamessett Farm Foundation; Estados Unidos. Drexel University; Estados UnidosFil: Pilcher, Nicolas J.. Marine Research Foundation; MalasiaFil: Poulin, Sarah. University of Duke; Estados UnidosFil: Read, Andrew J.. Duke University Marine Laboratory; Estados UnidosFil: Rees, ALan F.. University of Exeter; Reino Unido. Archelon; GreciaFil: Robinson, David P.. The Aquarium and Dubai Turtle Rehabilitation Project; Emiratos Arabes UnidosFil: Robinson, Nathan J.. FundaciĂłn OceanogrĂ fic; EspañaFil: Sandoval-Lugo, Alejandra G.. Instituto PolitĂ©cnico Nacional; MĂ©xicoFil: Schofield, Gail. Queen Mary University of London; Reino UnidoFil: Seminoff, Jeffrey A.. Noaa National Marine Fisheries Service Southwest Regional Office; Estados UnidosFil: Seney, Erin E.. University Of Central Florida; Estados UnidosFil: Snape, Robin T. E.. University of Exeter; Reino UnidoFil: Sözbilen, Dogan. Dekamer—sea Turtle Rescue Center; TurquĂ­a. Pamukkale University; TurquĂ­aFil: TomĂĄs, JesĂșs. Institut Cavanilles de Biodiversitat I Biologia Evolutiva; EspañaFil: Varo Cruz, Nuria. Universidad de Las Palmas de Gran Canaria; España. Ads Biodiversidad; España. Instituto Canario de Ciencias Marinas; EspañaFil: Wallace, Bryan P.. University of Duke; Estados Unidos. Ecolibrium, Inc.; Estados UnidosFil: Wildermann, Natalie E.. Texas A&M University; Estados UnidosFil: Witt, Matthew J.. University of Exeter; Reino UnidoFil: Zavala Norzagaray, Alan A.. Instituto politecnico nacional; MĂ©xicoFil: Halpin, Patrick N.. University of Duke; Estados Unido

    DataSheet_1_Biologically Important Areas II for cetaceans within U.S. and adjacent waters – Aleutian Islands and Bering Sea Region.pdf

    No full text
    We delineated and scored Biologically Important Areas (BIAs) for cetaceans in the Aleutian Islands and Bering Sea region. BIAs represent areas and times in which cetaceans are known to concentrate for activities related to reproduction, feeding, and migration, and also the known ranges of small and resident populations. This effort, the second led by the National Oceanic and Atmospheric Administration (NOAA), uses structured elicitation principles to build upon the first version of NOAA’s BIAs (BIA I) for cetaceans. Supporting evidence for BIA II came from aerial-, land-, and vessel-based surveys; satellite-tagging data; passive acoustic monitoring; Indigenous knowledge; photo-identification data; whaling data, including stomach and fecal contents; prey studies; and genetics. In addition to narratives, maps, and metadata tables, the BIA II products incorporate a scoring and labeling system, which will improve their utility and interpretability. BIAs are compilations of the best available science and have no inherent regulatory authority. They have been used by NOAA, other federal agencies, and the public to support planning and marine mammal impact assessments, and to inform the development of conservation measures for cetaceans. In the Aleutian Islands and Bering Sea region, a total of 19 BIAs were identified, delineated, and scored for seven species, including bowhead, North Pacific right, gray, humpback, fin, and sperm whales, and belugas. These include one hierarchical BIA for belugas that consists of one localized “child” BIA within an overarching “parent” BIA. There were 15 feeding, 3 migratory, and 1 small and resident population BIAs; no reproductive BIAs were identified. In some instances, information existed about a species’ use of a particular area and time, but the information was insufficient to confidently delineate the candidate BIA; in those cases, the candidate BIA was added to a watch list. A total of 22 watch list areas were identified and delineated for 10 species, including all species mentioned above and minke whales, harbor porpoises, and Dall’s porpoises. There were 15 feeding, 4 migratory, 2 reproductive, and 1 small and resident population watch list areas. Some BIAs and watch list areas were transboundary between the Aleutian Islands and Bering Sea region and the Arctic region.</p

    Circulating Glutamate and Taurine Levels Are Associated with the Generation of Reactive Oxygen Species in Paroxysmal Atrial Fibrillation

    No full text
    Atrial fibrillation (AF) is the most common cardiac arrhythmia, but its proarrhythmic mechanism remains to be elucidated. Glutamate (Glu) and taurine (Tau) are present in the myocardium at substantially higher concentrations than in the plasma, suggesting their active role in myocardium. Here, we tested the hypothesis that the metabolism of Glu and Tau is altered in association with the generation of reactive oxygen species (ROS) in patients with AF. Fifty patients with paroxysmal AF and 50 control subjects without a history of AF were consecutively enrolled. Circulating Glu and Tau levels were measured and correlations between Glu/Tau and ROS levels were examined. Glu/Tau content was significantly higher in patients with AF versus controls (Glu: 79.2±23.9 versus 60.5±25.2 nmol/L; Tau: 78.8±19.8 versus 68.5±20.8 nmol/L; mean ± standard deviation (SD), p<0.001 for both). Glu/Tau levels also showed an independent association with AF by multiple logistic regression analysis. Glu and Tau levels both showed significant positive associations with plasma hydroperoxide concentrations. These data suggest a novel pathophysiological role of Glu and Tau in association with ROS production in paroxysmal AF, providing new insights into the elevated amino acid content in cardiac disease

    Table_1_Biologically Important Areas II for cetaceans within U.S. and adjacent waters – Aleutian Islands and Bering Sea Region.docx

    No full text
    We delineated and scored Biologically Important Areas (BIAs) for cetaceans in the Aleutian Islands and Bering Sea region. BIAs represent areas and times in which cetaceans are known to concentrate for activities related to reproduction, feeding, and migration, and also the known ranges of small and resident populations. This effort, the second led by the National Oceanic and Atmospheric Administration (NOAA), uses structured elicitation principles to build upon the first version of NOAA’s BIAs (BIA I) for cetaceans. Supporting evidence for BIA II came from aerial-, land-, and vessel-based surveys; satellite-tagging data; passive acoustic monitoring; Indigenous knowledge; photo-identification data; whaling data, including stomach and fecal contents; prey studies; and genetics. In addition to narratives, maps, and metadata tables, the BIA II products incorporate a scoring and labeling system, which will improve their utility and interpretability. BIAs are compilations of the best available science and have no inherent regulatory authority. They have been used by NOAA, other federal agencies, and the public to support planning and marine mammal impact assessments, and to inform the development of conservation measures for cetaceans. In the Aleutian Islands and Bering Sea region, a total of 19 BIAs were identified, delineated, and scored for seven species, including bowhead, North Pacific right, gray, humpback, fin, and sperm whales, and belugas. These include one hierarchical BIA for belugas that consists of one localized “child” BIA within an overarching “parent” BIA. There were 15 feeding, 3 migratory, and 1 small and resident population BIAs; no reproductive BIAs were identified. In some instances, information existed about a species’ use of a particular area and time, but the information was insufficient to confidently delineate the candidate BIA; in those cases, the candidate BIA was added to a watch list. A total of 22 watch list areas were identified and delineated for 10 species, including all species mentioned above and minke whales, harbor porpoises, and Dall’s porpoises. There were 15 feeding, 4 migratory, 2 reproductive, and 1 small and resident population watch list areas. Some BIAs and watch list areas were transboundary between the Aleutian Islands and Bering Sea region and the Arctic region.</p
    corecore