20 research outputs found

    Tailored Light Scattering through Hyperuniform Disorder in Self-Organized Arrays of High-Index Nanodisks

    Get PDF
    Arrays of nanoparticles exploited in light scattering applications commonly only feature either a periodic or a rather random arrangement of its constituents. For the periodic case, light scattering is mostly governed by the strong spatial correlations of the arrangement, expressed by the structure factor. For the random case, structural correlations cancel each other out and light scattering is mostly governed by the scattering properties of the individual scatterer, expressed by the form factor. In contrast to these extreme cases, it is shown here that hyperuniform disorder in self-organized large-area arrays of high refractive index nanodisks enables both structure and form factor to impact the resulting scattering pattern, offering novel means to tailor light scattering. The scattering response from the authors’ nearly hyperuniform interfaces can be exploited in a large variety of applications and constitutes a novel class of advanced optical materials

    Effect of metal ions on the physical properties of multilayers from hyaluronan and chitosan, and the adhesion, growth and adipogenic differentiation of multipotent mouse fibroblasts

    Full text link
    [EN] Polyelectrolyte multilayers (PEMs) consisting of the polysaccharides hyaluronic acid (HA) as the polyanion and chitosan (Chi) as the polycation were prepared with layer-by-layer technique (LbL). The [Chi/HA](5) multilayers were exposed to solutions of metal ions (Ca2+, Co2+, Cu2+ and Fe3+). Binding of metal ions to [Chi/HA](5) multilayers by the formation of complexes with functional groups of polysaccharides modulates their physical properties and the bioactivity of PEMs with regard to the adhesion and function of multipotent murine C3H10T1/2 embryonic fibroblasts. Characterization of multilayer formation and surface properties using different analytical methods demonstrates changes in the wetting, surface potential and mechanical properties of multilayers depending on the concentration and type of metal ion. Most interestingly, it is observed that Fe3+ metal ions greatly promote adhesion and spreading of C3H10T1/2 cells on the low adhesive [Chi/HA](5) PEM system. The application of intermediate concentrations of Cu2+, Ca2+ and Co2+ as well as low concentrations of Fe3+ to PEMs also results in increased cell spreading. Moreover, it can be shown that complex formation of PEMs with Cu2+ and Fe3+ ions leads to increased metabolic activity in cells after 24 h and induces cell differentiation towards adipocytes in the absence of any additional adipogenic media supplements. Overall, complex formation of [Chi/HA](5) PEM with metal ions like Cu2+ and Fe3+ represents an interesting and cheap alternative to the use of growth factors for making cell-adhesive coatings and guiding stem cell differentiation on implants and scaffolds to regenerate connective-type of tissues.This work was part of the High-Performance Center Chemical and Biosystems Technology Halle/Leipzig, supported by the European Regional Development Fund (ERDF), and a grant to HK from the Martin Luther University Halle-Wittenberg for female PhD students. The work was further supported by the Fraunhofer Internal Programs under Grant No. Attract 069-608203 (CEHS). TG acknowledges the kind support by the Ministry of Science and Higher Education of the Russian Federation within the framework of state support for the creation and development of World-Class Research Centers ``Digital biodesign and personalized healthcare'' 075-15-2020926. GGF acknowledges funding by the State Research Agency. Ministry of Science and Innovation of Spain, grant PID2019106000RB-C21/AEI/10.13039/501100011033 project. We are grateful for the kind support by Christian Willems for the help in formatting and proof reading the manuscript.Kindi, H.; Menzel, M.; Heilmann, A.; Schmelzer, CEH.; Herzberg, M.; Fuhrmann, B.; Gallego-Ferrer, G.... (2021). Effect of metal ions on the physical properties of multilayers from hyaluronan and chitosan, and the adhesion, growth and adipogenic differentiation of multipotent mouse fibroblasts. Soft Matter. 17(36):8394-8410. https://doi.org/10.1039/d1sm00405k83948410173

    Resistive switching and voltage induced modulation of tunneling magnetoresistance in nanosized perpendicular organic spin valves

    No full text
    Nanoscale multifunctional perpendicular organic spin valves have been fabricated. The devices based on an La0.7Sr0.3MnO3/Alq3/Co trilayer show resistive switching of up to 4-5 orders of magnitude and magnetoresistance as high as -70% the latter even changing sign when voltage pulses are applied. This combination of phenomena is typically observed in multiferroic tunnel junctions where it is attributed to magnetoelectric coupling between a ferromagnet and a ferroelectric material. Modeling indicates that here the switching originates from a modification of the La0.7Sr0.3MnO3 surface. This modification influences the tunneling of charge carriers and thus both the electrical resistance and the tunneling magnetoresistance which occurs at pinholes in the organic layer

    Elastic behavior of metal-assisted etched Si/SiGe superlattice nanowires containing dislocations

    Get PDF
    We systematically investigate structural parameters, such as shape, size, elastic strain, and relaxations, of metal-assisted etched vertically modulated Si/SiGe superlattice nanowires by using electron microscopy, synchrotron-based x-ray diffraction, and numerical linear elasticity theory. A vertical Si/Ge superlattice with atomically flat interfaces is grown by using molecular beam epitaxy on Si-buffered Si(001) substrates. The lattice constants for Si and Ge are 5.43 and 5.66 Ă…, respectively, which indicate a lattice mismatch of 4.2%. This results in a strained layer in the boundary between Si and Ge leading to dislocations. These substrates serve as the starting material for nanostructuring the surface by using metal-assisted etching. It is shown that the high quality crystalline structure is preserved in the fabrication process, while the lattice mismatch is partially relieved by dislocation formation. Despite this highly effective relaxation path, dislocations present in the parent superlattice do not vanish upon nanostructuring for wires with diameters of down to at least 80 nm. We relate these observations to the applicability of silicon-based nanowires for high-performance thermoelectric generators

    Elastic behavior of metal-assisted etched Si/SiGe superlattice nanowires containing dislocations

    No full text
    We systematically investigate structural parameters, such as shape, size, elastic strain, and relaxations, of metal-assisted etched vertically modulated Si/SiGe superlattice nanowires by using electron microscopy, synchrotron-based x-ray diffraction, and numerical linear elasticity theory. A vertical Si/Ge superlattice with atomically flat interfaces is grown by using molecular beam epitaxy on Si-buffered Si(001) substrates. The lattice constants for Si and Ge are 5.43 and 5.66 Ă…, respectively, which indicate a lattice mismatch of 4.2%. This results in a strained layer in the boundary between Si and Ge leading to dislocations. These substrates serve as the starting material for nanostructuring the surface by using metal-assisted etching. It is shown that the high quality crystalline structure is preserved in the fabrication process, while the lattice mismatch is partially relieved by dislocation formation. Despite this highly effective relaxation path, dislocations present in the parent superlattice do not vanish upon nanostructuring for wires with diameters of down to at least 80 nm. We relate these observations to the applicability of silicon-based nanowires for high-performance thermoelectric generators

    Ag-Mediated Charge Transport during Metal-Assisted Chemical Etching of Silicon Nanowires

    No full text
    The charge transport mechanism during metal-assisted chemical etching of Si nanowires with contiguous metal films has been investigated. The experiments give a better insight how the charges and reaction products can penetrate to the etching front. The formation of a layer of porous Si between the metal film and the bulk Si is a prerequisite for the etching process. The electronic holes (positive charges) necessary for the etching of porous Si are generated at the surface of the metal in contact with the oxidative agent. Because of the insulating character of the thin walls of the porous Si, the transport of the electronic holes through this layer is not possible. Instead, it is found that the transport of electronic holes proceeds primarily by means of the Ag/Ag<sup>+</sup> redox pair circulating in the electrolyte and diffusing through the etched pores in the Si. The charge transport occurs without the ionic contribution at the positions where the metal is in direct contact with the Si. Here, an electropolishing process takes place, leading to an extensive removal of the Si and sinking in of the film into the Si substrate

    Nanoscaled Surface Patterns Influence Adhesion and Growth of Human Dermal Fibroblasts

    No full text
    In general, there is a need for passivation of nanopatterned biomaterial surfaces if cells are intended to interact only with a feature of interest. For this reason self-assembled monolayers (SAM), varying in chain length, are used; they are highly effective in preventing protein adsorption or cell adhesion. In addition, a simple and cost-effective technique to design nanopatterns of various sizes and distances, the so-called nanosphere lithography (NSL), is discussed, which allows the control of cell adhesion and growth depending on the feature dimensions. Combining both techniques results in highly selective nanostructured surfaces, showing that single proteins selectively adsorb on activated nanopatterns. Additionally, adhesion and growth of normal human dermal fibroblasts (NHDF) is strongly affected by the nanostructure dimensions, and it is proven that fibronectin (FN) matrix formation of these cells is influenced, too. Moreover, the FN fibrils are linked to the hexagonally close-packed nanopatterns. As a result, the system presented here can be applied in tissue engineering and implant design due to the fact that the nanopattern dimensions give rise to further modifications and allow the introduction of chemical heterogeneity to guide stem cell differentiation in the future

    Introduction of Laser Interference Lithography to Make Nanopatterned Surfaces for Fundamental Studies on Stem Cell Response

    No full text
    The extracellular matrix (ECM) is a nanostructured environment that provides chemical, mechanical, and topographical stimuli for various cellular functions. Here, we introduce the application of laser interference lithography (LIL) to generate hexagonally arranged gold nanostructures of three different dimensions on silicon to study the effect of feature dimensions on human adipose-derived stem cells (hADSC) in terms of adhesion, growth, and differentiation. Self-assembled monolayers (SAM) were used to passivate the background silicon surface with a long-chain polyethylene glycol (PEG), whereas the gold nanostructures were activated with mercaptoundecanoic acid (MUDA) to direct protein adsorption and cell adhesive structures to them, only. It was possible to show that the size and distance of the nanostructures affected the spreading of hADSC with a decrease of cell size with the increase of feature dimensions, which corresponded also to the expression of focal adhesions and presence of the small GTPase RhoA. Effects of these early events, related to outside-in signal transduction, were visible by an enhanced cell growth on smaller feature dimensions and distinct effects on cell differentiation. Because of the precise control of chemical and topographical cues, the presented system offers great potential to study effects of material topography on stem cell behavior, which may pave the way for applications in tailoring surfaces of implants and tissue engineering scaffolds
    corecore