1,294 research outputs found

    Issues in economics: what is the cost of deflation?

    Get PDF
    A steady decline in the core rate of inflation over the past few years has prompted the question: What are the economic consequences when the inflation rate drops below zero?Deflation (Finance)

    Universal conductance fluctuations in Dirac materials in the presence of long-range disorder

    Get PDF
    We study quantum transport in Dirac materials with a single fermionic Dirac cone (strong topological insulators and graphene in the absence of intervalley coupling) in the presence of non-Gaussian long-range disorder. We show, by directly calculating numerically the conductance fluctuations, that in the limit of very large system size and disorder strength, quantum transport becomes universal. However, a systematic deviation away from universality is obtained for realistic system parameters. By comparing our results to existing experimental data on 1/f noise, we suggest that many of the graphene samples studied to date are in a non-universal crossover regime of conductance fluctuations.Comment: 5 pages, 3 figures. Published versio

    Radiative Corrections to Longitudinal and Transverse Gauge Boson and Higgs Production

    Full text link
    Radiative corrections to gauge boson and Higgs production computed recently using soft-collinear effective theory (SCET) require the one-loop high-scale matching coefficients in the standard model. We give explicit expressions for the matching coefficients for the effective field theory (EFT) operators for q qbar -> VV and q qbar -> phi^+ phi for a general gauge theory with an arbitrary number of gauge groups. The group theory factors are given explicitly for the standard model, including both QCD and electroweak corrections.Comment: 16 pages, 49 figure

    Four-point resistance of individual single-wall carbon nanotubes

    Get PDF
    We have studied the resistance of single-wall carbon nanotubes measured in a four-point configuration with noninvasive voltage electrodes. The voltage drop is detected using multiwalled carbon nanotubes while the current is injected through nanofabricated Au electrodes. The resistance at room temperature is shown to be linear with the length as expected for a classical resistor. This changes at cryogenic temperature; the four-point resistance then depends on the resistance at the Au-tube interfaces and can even become negative due to quantum-interference effects.Comment: 4 pages, 4 figure

    Creating tissue with intervertebral disc-like characteristics using gdf5 functionalized silk scaffolds and human mesenchymal stromal cells

    Get PDF
    For years, researchers have searched for a suitable biomaterial to regenerate the intervertebral disc (IVD). A promising candidate is silk, as there have been several approaches in the past where silk fibroin was used to repair the IVD’s nucleus pulposus (NP) and annulus fibrosus (AF). However, to date, nobody has attempted to recreate IVD tissue with dimensions and cell densities comparable to a human IVD using silk and human mesenchymal stromal cells (MSC). Therefore, silk scaffolds were produced from Bombyx mori yarn. To mimic the AF, the yarn was embroidered into a ring-like structure or patch. To mimic the NP, fibre-additive manufacturing was applied to create highly porous constructs. Half of the NP scaffolds were functionalized with the growth differentiation factor 5 (GDF5). The scaffolds were seeded with MSCs from five human donors in a density of one-third of the density found in the human IVD and cultured for 7, 14 or 21 days in transforming growth factor β1 (TGF-β1)-enriched medium. All scaffolds were biocompatible as cell numbers increased by a factor 4-5. Furthermore, the scaffolds generally showed an anabolic phenotype, which was positively influenced by GDF5, and tissue-like characteristics were promoted based on the scaffolds’ morphology. In conclusion, the here proposed silk scaffolds showed IVD-like characteristics with a size and cell density comparable to human IVD tissue

    Soft-Collinear Factorization and Zero-Bin Subtractions

    Full text link
    We study the Sudakov form factor for a spontaneously broken gauge theory using a (new) Delta -regulator. To be well-defined, the effective theory requires zero-bin subtractions for the collinear sectors. The zero-bin subtractions depend on the gauge boson mass M and are not scaleless. They have both finite and 1/epsilon contributions, and are needed to give the correct anomalous dimension and low-scale matching contributions. We also demonstrate the necessity of zero-bin subtractions for soft-collinear factorization. We find that after zero-bin subtractions the form factor is the sum of the collinear contributions 'minus' a soft mass-mode contribution, in agreement with a previous result of Idilbi and Mehen in QCD. This appears to conflict with the method-of-regions approach, where one gets the sum of contributions from different regions.Comment: 9 pages, 5 figures. V2:ref adde

    Factorization Structure of Gauge Theory Amplitudes and Application to Hard Scattering Processes at the LHC

    Full text link
    Previous work on electroweak radiative corrections to high energy scattering using soft-collinear effective theory (SCET) has been extended to include external transverse and longitudinal gauge bosons and Higgs bosons. This allows one to compute radiative corrections to all parton-level hard scattering amplitudes in the standard model to NLL order, including QCD and electroweak radiative corrections, mass effects, and Higgs exchange corrections, if the high-scale matching, which is suppressed by two orders in the log counting, and contains no large logs, is known. The factorization structure of the effective theory places strong constraints on the form of gauge theory amplitudes at high energy for massless and massive gauge theories, which are discussed in detail in the paper. The radiative corrections can be written as the sum of process-independent one-particle collinear functions, and a universal soft function. We give plots for the radiative corrections to q qbar -> W_T W_T, Z_T Z_T, W_L W_L, and Z_L H, and gg -> W_T W_T to illustrate our results. The purely electroweak corrections are large, ranging from 12% at 500 GeV to 37% at 2 TeV for transverse W pair production, and increasing rapidly with energy. The estimated theoretical uncertainty to the partonic (hard) cross-section in most cases is below one percent, smaller than uncertainties in the parton distribution functions (PDFs). We discuss the relation between SCET and other factorization methods, and derive the Magnea-Sterman equations for the Sudakov form factor using SCET, for massless and massive gauge theories, and for light and heavy external particles.Comment: 44 pages, 30 figures. Refs added, typos fixed. ZL ZL plots removed because of a possible subtlet

    Breakdown of the Korringa Law of Nuclear Spin Relaxation in Metallic GaAs

    Full text link
    We present nuclear spin relaxation measurements in GaAs epilayers using a new pump-probe technique in all-electrical, lateral spin-valve devices. The measured T1 times agree very well with NMR data available for T > 1 K. However, the nuclear spin relaxation rate clearly deviates from the well-established Korringa law expected in metallic samples and follows a sub-linear temperature dependence 1/T1 ~ T^0.6 for 0.1 K < T < 10 K. Further, we investigate nuclear spin inhomogeneities.Comment: 5 pages, 4 (color) figures. arXiv admin note: text overlap with arXiv:1109.633
    • …
    corecore