Previous work on electroweak radiative corrections to high energy scattering
using soft-collinear effective theory (SCET) has been extended to include
external transverse and longitudinal gauge bosons and Higgs bosons. This allows
one to compute radiative corrections to all parton-level hard scattering
amplitudes in the standard model to NLL order, including QCD and electroweak
radiative corrections, mass effects, and Higgs exchange corrections, if the
high-scale matching, which is suppressed by two orders in the log counting, and
contains no large logs, is known. The factorization structure of the effective
theory places strong constraints on the form of gauge theory amplitudes at high
energy for massless and massive gauge theories, which are discussed in detail
in the paper. The radiative corrections can be written as the sum of
process-independent one-particle collinear functions, and a universal soft
function. We give plots for the radiative corrections to q qbar -> W_T W_T, Z_T
Z_T, W_L W_L, and Z_L H, and gg -> W_T W_T to illustrate our results. The
purely electroweak corrections are large, ranging from 12% at 500 GeV to 37% at
2 TeV for transverse W pair production, and increasing rapidly with energy. The
estimated theoretical uncertainty to the partonic (hard) cross-section in most
cases is below one percent, smaller than uncertainties in the parton
distribution functions (PDFs). We discuss the relation between SCET and other
factorization methods, and derive the Magnea-Sterman equations for the Sudakov
form factor using SCET, for massless and massive gauge theories, and for light
and heavy external particles.Comment: 44 pages, 30 figures. Refs added, typos fixed. ZL ZL plots removed
because of a possible subtlet