620 research outputs found

    Intrinsic anomalous Hall effect in nickel: An GGA+U study

    Full text link
    The electronic structure and intrinsic anomalous Hall conductivity of nickel have been calculated based on the generalized gradient approximation (GGA) plus on-site Coulomb interaction (GGA+U) scheme. It is found that the intrinsic anomalous Hall conductivity (σxyH\sigma_{xy}^H) obtained from the GGA+U calculations with U=1.9U = 1.9 eV and J=1.2J=1.2 eV, is in nearly perfect agreement with that measured recently at low temperatures while, in contrast, the σxyH\sigma_{xy}^H from the GGA calculations is about 100% larger than the measured one. This indicates that, as for the other spin-orbit interaction (SOI)-induced phenomena in 3dd itinerant magnets such as the orbital magnetic magnetization and magnetocrystalline anisotropy, the on-site electron-electron correlation, though moderate only, should be taken into account properly in order to get the correct anomalous Hall conductivity. The intrinsic σxyH\sigma_{xy}^H and the number of valence electrons (NeN_e) have also been calculated as a function of the Fermi energy (EFE_F). A sign change is predicted at EF=0.38E_F = -0.38 eV (Ne=9.57N_e = 9.57), and this explain qualitatively why the theoretical and experimental σxyH\sigma_{xy}^H values for Fe and Co are positive. It is also predicted that fcc Ni(1x)_{(1-x)}Co(Fe,Cu)x_x alloys with xx being small, would also have the negative σxyH\sigma_{xy}^H with the magnitude being in the range of 5001400500\sim 1400 Ω1\Omega^{-1}cm1^{-1}. The most pronounced effect of including the on-site Coulomb interaction is that all the dd-dominant bands are lowered in energy relative to the EFE_F by about 0.3 eV, and consequently, the small minority spin X2_2 hole pocket disappears. The presence of the small X2_2 hole pocket in the GGA calculations is attributed to be responsible for the large discrepancy in the σxyH\sigma_{xy}^H between theory and experiment.Comment: 7 pages, 3 figures; Accepted for publication in Physical Review

    ЗАВИСИМОСТЬ СПЕКТРА ПОТРЕБЛЯЕМОЙ МОЩНОСТИ ЭЛЕКТРОДВИГАТЕЛЯ НАСОСА ОТ ФИЗИЧЕСКИХ ПАРАМЕТРОВ МЕХАНИЗМА

    Get PDF
    In article dependence of the electric motor power consumption spectrum on physical parameters of the pump is proved. It is proved transitivity of transformation of methods of vibration-acoustic diagnostics in methods energy power diagnosticsУ статті доведено залежність спектру споживаємої потужності електродвигуна насосу від фізичніх параметрів механізму. Доведено транзитивність перетворення методів віброакустичної діагностики в методи енергодіагностики

    DDR2 expression in cancer-associated fibroblasts promotes ovarian cancer tumor invasion and metastasis through periostin-ITGB1

    Get PDF
    Ovarian cancer has the highest mortality of all gynecologic malignancies. As such, there is a need to identify molecular mechanisms that underlie tumor metastasis in ovarian cancer. Increased expression of receptor tyrosine kinase, DDR2, has been associated with worse patient survival. Identifying downstream targets of DDR2 may allow specific modulation of ovarian cancer metastatic pathways. Additionally, stromal cells play a critical role in metastasis. The crosstalk between tumor and stromal cells can lead to tumor progression. We first identified that tumor cells co-cultured with DDR2-expressing fibroblasts had lower periostin expression when compared to tumor cells co-cultured with DDR2-depleted fibroblasts. We confirmed that DDR2 regulates POSTN expression in ovarian cancer-associated fibroblasts (CAFs). We found that mesothelial cell clearance and invasion by tumor cells were enhanced three-fold when DDR2 and POSTN-expressing CAFs were present compared to DDR2 and POSTN-depleted CAFs. Furthermore, DDR2-depleted and POSTN-overexpressing CAFs co-injected with ovarian tumor cells had increased tumor burden compared to mice injected with tumor cells and DDR2 and POSTN-depleted CAFs. Furthermore, we demonstrated that DDR2 regulates periostin expression through integrin B1 (ITGB1). Stromal DDR2 is highly correlated with stromal POSTN expression in ovarian cancer patient tumors. Thus, DDR2 expression in CAFs regulates the steps of ovarian cancer metastasis through periostin

    Probabilistic Prognosis of Non-Planar Fatigue Crack Growth

    Get PDF
    Quantifying the uncertainty in model parameters for the purpose of damage prognosis can be accomplished utilizing Bayesian inference and damage diagnosis data from sources such as non-destructive evaluation or structural health monitoring. The number of samples required to solve the Bayesian inverse problem through common sampling techniques (e.g., Markov chain Monte Carlo) renders high-fidelity finite element-based damage growth models unusable due to prohibitive computation times. However, these types of models are often the only option when attempting to model complex damage growth in real-world structures. Here, a recently developed high-fidelity crack growth model is used which, when compared to finite element-based modeling, has demonstrated reductions in computation times of three orders of magnitude through the use of surrogate models and machine learning. The model is flexible in that only the expensive computation of the crack driving forces is replaced by the surrogate models, leaving the remaining parameters accessible for uncertainty quantification. A probabilistic prognosis framework incorporating this model is developed and demonstrated for non-planar crack growth in a modified, edge-notched, aluminum tensile specimen. Predictions of remaining useful life are made over time for five updates of the damage diagnosis data, and prognostic metrics are utilized to evaluate the performance of the prognostic framework. Challenges specific to the probabilistic prognosis of non-planar fatigue crack growth are highlighted and discussed in the context of the experimental results

    Probabilistic Fatigue Damage Prognosis Using a Surrogate Model Trained Via 3D Finite Element Analysis

    Get PDF
    Utilizing inverse uncertainty quantification techniques, structural health monitoring can be integrated with damage progression models to form probabilistic predictions of a structure's remaining useful life. However, damage evolution in realistic structures is physically complex. Accurately representing this behavior requires high-fidelity models which are typically computationally prohibitive. In the present work, a high-fidelity finite element model is represented by a surrogate model, reducing computation times. The new approach is used with damage diagnosis data to form a probabilistic prediction of remaining useful life for a test specimen under mixed-mode conditions

    Radiation therapy for vaginal and perirectal lesions in recurrent ovarian cancer

    Get PDF
    The role for localized radiation to treat ovarian cancer (OC) patients with locally recurrent vaginal/perirectal lesions remains unclear, though we hypothesize these patients may be salvaged locally and gain long-term survival benefit. We describe our institutional outcomes using intensity modulated radiation therapy (IMRT) +/- high-dose rate (HDR) brachytherapy to treat this population. Our primary objectives were to evaluate complete response rates of targeted lesions after radiation and calculate our 5-year in-field control (IFC) rate. Secondary objectives were to assess radiation-related toxicities, chemotherapy free-interval (CFI), as well as post-radiation progression-free (PFS) and overall survival (OS). PFS and OS were defined from radiation start to either progression or death/last follow-up, respectively. This was a heavily pre-treated cohort of 17 recurrent OC patients with a median follow-up of 28.4 months (range 4.5-166.4) after radiation completion. 52.9% had high-grade serous histology and 4 (23.5%) had isolated vaginal/perirectal disease. Four (23.5%) patients had in-field failures at 3.7, 11.2, 24.5, and 27.5 months after start of radiation, all treated with definitive dosing of radiation therapy. Patients who were platinum-sensitive prior to radiation had similar median PFS (6.5 vs. 13.4 months, log-rank p = 0.75), but longer OS (71.1 vs 18.8 months, log-rank p = 0.05) than their platinum-resistant counterparts. Excluding patients with low-grade histology or who were treated with palliative radiation, median CFI was 14.2 months (range 4.7 - 33.0). Radiation was well tolerated with 2 (12.0%) experiencing grade 3/4 gastrointestinal/genitourinary toxicities. In conclusion, radiation to treat locally recurrent vaginal/perirectal lesions in heavily pre-treated OC patients is safe and may effectively provide IFC

    Charged Higgs boson contribution to νˉee\bar{\nu}_e-e scattering from low to ultrahigh energy in Higgs triplet model

    Full text link
    We study the νˉee\bar{\nu}_e-e scattering from low to ultrahigh energy in the framework of Higgs Triplet Model (HTM). We add the contribution of charged Higgs boson exchange to the total cross section of the scattering. We obtain the upper bound hee/MH±2.8×103GeV1h_{ee}/M_{H^\pm}\lesssim2.8\times10^{-3}GeV^{-1} in this process from low energy experiment. We show that by using the upper bound obtained, the charged Higgs contribution can give enhancements to the total cross section with respect to the SM prediction up to 5.16% at E1014E\leq10^{14} eV and maximum at sMH±2s\approx M_{H^\pm}^2 and would help to determine the feasibility experiments to discriminate between SM and HTM at current available facilities.Comment: 6 pages, 6 figure
    corecore