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ABSTRACT

Quantifying the uncertainty in model parameters for the

purpose of damage prognosis can be accomplished utiliz-

ing Bayesian inference and damage diagnosis data from

sources such as non-destructive evaluation or structural health

monitoring. The number of samples required to solve the

Bayesian inverse problem through common sampling tech-

niques (e.g., Markov chain Monte Carlo) renders high-fidelity

finite element-based damage growth models unusable due to

prohibitive computation times. However, these types of mod-

els are often the only option when attempting to model com-

plex damage growth in real-world structures. Here, a re-

cently developed high-fidelity crack growth model is used

which, when compared to finite element-based modeling, has

demonstrated reductions in computation times of three orders

of magnitude through the use of surrogate models and ma-

chine learning. The model is flexible in that only the expen-

sive computation of the crack driving forces is replaced by

the surrogate models, leaving the remaining parameters ac-

cessible for uncertainty quantification. A probabilistic prog-

nosis framework incorporating this model is developed and

demonstrated for non-planar crack growth in a modified,

edge-notched, aluminum tensile specimen. Predictions of re-

maining useful life are made over time for five updates of the

damage diagnosis data, and prognostic metrics are utilized to
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evaluate the performance of the prognostic framework. Chal-

lenges specific to the probabilistic prognosis of non-planar

fatigue crack growth are highlighted and discussed in the con-

text of the experimental results.

1. INTRODUCTION

Probabilistic damage prognosis is an essential aspect of any

aerospace structural health management system. The ability

to predict, with confidence and in the face of uncertainties,

how damage will propagate in a structure can be an invalu-

able tool to operators making mission- or safety-critical de-

cisions. The applications of probabilistic damage prognosis

are widespread, including but not limited to concepts such as

condition-based maintenance (Farrar & Worden, 2012) and

long endurance missions (e.g., unmanned aircraft systems or

spacecraft) for which maintenance is not an option. The de-

gree of fidelity in the models used to make these forecasts can

vary from simple approximations to high-fidelity finite ele-

ment models with millions of degrees of freedom. Recently,

NASA has adopted an approach referred to as digital twin

(DT) as part of the Convergent Aeronautics Solutions (CAS)

project. Although a commonly used term that is sometimes

considered synonymous with structural health management,

this particular form of DT focuses on the high-fidelity mod-

eling and coupling of fluid-structure interactions, material re-

sponse, and multi-scale damage growth. In regards to fatigue

damage prognosis in particular, this DT framework rests upon

a foundation comprising the concept of damage and dura-
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bility simulators (DDSim) (Emery, Hochhalter, Wawrzynek,

Heber, & Ingraffea, 2009).

DDSim is a hierarchical prognosis methodology consisting

of three primary levels. Level I deals with a rapid search

and assessment of structural sub-regions possessing the po-

tential to initiate life-limiting damage. Using linear elastic

fracture mechanics (LEFM), this search is conducted at a sub-

set of nodes in a finite element (FE) model where stresses

from the FE solution inform analytical models to approxi-

mate damage driving forces. Level I aims to provide an esti-

mate of the number of cycles to failure, or remaining useful

life (RUL), with damage initiating at various locations in the

FE model. At Level II, these approximations are improved

upon using high-fidelity fracture simulations. The potential

for life-limiting damage obtained from Level I is used to in-

form the initial damage conditions (i.e., most likely sizes,

locations, and orientations) chosen for these simulations so

as to reduce the computational effort involved. Level II is

used to more accurately predict the structure’s RUL at the

macroscale. Both of these levels are typical instances of dam-

age prognosis methodologies. However, a third level exists

that uses high-fidelity models to predict the number of cy-

cles consumed by damage initiation and microscale damage

growth, two mechanisms that often account for the majority

of a structure’s fatigue life (Vasudevan, Sadananda, & Glinka,

2001). The work presented herein focuses on Level II, but

with the intention of utilizing information from Levels I and

III.

While microscale growth can consume a significant portion

of a structure’s fatigue life, the risk associated with life pre-

dictions made in the macroscale growth regime of Level II

is higher; this is the regime in which detectable cracks typ-

ically lie, and thus is the regime right before failure or re-

tirement (Farrar & Lieven, 2007; Chang, Markmiller, Ihn, &

Cheng, 2007; Banerjee, S, & Chijioke, 2014). With higher

risk comes higher impact, as accurate and reliable predic-

tions at this stage of fatigue damage growth have the potential

to safely and significantly extend the useful life of a struc-

ture. Furthermore, since structural health monitoring (SHM)

or non-destructive evaluation (NDE) can be used for damage

diagnosis at these length scales, a unique opportunity exists

in which these data can be used to reduce uncertainty in RUL

forecasts on a structure-by-structure basis. Although not crit-

ical for the understanding of this paper, it should be noted

that SHM is defined by its use of mounted sensors for online

damage diagnostics (i.e., monitoring during operation), while

NDE refers to more traditional methods for damage detection

that are carried out offline (Farrar & Worden, 2007).

There has been extensive research in the area of coupling

SHM and NDE with damage prognosis, a few notable exam-

ples of which are as follows. Liu and Mahadevan proposed

a new way to quantify the uncertainty in equivalent initial

flaw sizes, which they used in conjunction with an analytical

fatigue crack growth model to produce probabilistic predic-

tions of fatigue life in metallic specimens (Liu & Mahadevan,

2009). Gobbato et al. combined NDE with probabilistic mod-

els of both damage evolution and future aerodynamic loading

through Bayesian inference (Gobbato, Conte, Kosmatka, &

Farrar, 2012). Peng et al. demonstrated a direct link between

Lamb wave-based damage detection and probabilistic prog-

nosis for a metallic lap joint using analytical crack growth

laws and Bayesian inference (Peng, He, et al., 2015). In re-

cent years, researchers have also investigated fatigue dam-

age prognosis for composite materials, joining Lamb wave-

based diagnosis with analytical stiffness degradation models

through Bayesian approaches (Chiachıo, Chiachıo, Saxena,

Rus, & Goebel, 2013; Peng, Liu, Saxena, & Goebel, 2015).

Note that all of these works are probabilistic. Without prob-

ability, it is often impossible to make predictions with con-

fidence. Without confidence, the risk in making mission- or

safety-critical decisions becomes unacceptable.

Much of the research conducted and discussed thus far would

be considered Level I approaches. The true key to Level II

lies in the fidelity of the modeling. Application to damage

in real-world structures is key to unlocking the potential of

damage prognosis. High-fidelity FE models are now capa-

ble of modeling the complexities of real-world damage, but

these models are often prohibitively time-intensive. This lim-

itation is the primary reason these models are seldom used

in probabilistic prognosis and do not appear in the afore-
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mentioned research efforts. Many of these works rely on

Bayesian inference and sampling techniques such as Markov

chain Monte Carlo (MCMC) to develop probabilistic life pre-

dictions. MCMC can require anywhere from thousands to

millions of simulations to provide meaningful results (Smith,

2013). FE-based simulations which conservatively take on

the order of a few hours to complete could result in total pre-

diction times on the order of years. While efforts are being

made to parallelize these statistical techniques (Ter Braak,

2006; Vrugt et al., 2009; Laloy & Vrugt, 2012; Neiswanger,

Wang, & Xing, 2014), parallelization is, in general, not a fea-

sible option at this time due to the serial nature of MCMC

techniques.

Some researchers have taken strides to bridge the gap be-

tween probabilistic prognosis and high-fidelity modeling, pri-

marily through the use of machine learning. In general, the

time consuming aspects of high-fidelity damage growth sim-

ulations can be replaced by a surrogate model, trained via

supervised machine learning, which can quantitatively repre-

sent the primary features of the high-fidelity model being re-

placed but at a decreased computational cost. Sankararaman

et al. trained surrogate models to replace expensive finite ele-

ment solutions of crack driving forces for a cylindrical spec-

imen subjected to multi-axial loading using a characteristic

plane approach (Sankararaman, Ling, Shantz, & Mahadevan,

2011; Sankararaman, Ling, & Mahadevan, 2011). Expanding

upon this work, Ling and Mahadevan coupled the surrogate

model-based, characteristic plane approach with damage di-

agnosis data to forecast fatigue damage growth in aluminum

specimens with quantified uncertainties (Ling & Mahadevan,

2012). As a natural extension, Hombal et al. developed a

two-stage planar approximation for non-planar crack growth

(Hombal, Ling, Wolfe, & Mahadevan, 2012). A more ad-

vanced surrogate modeling methodology was proposed by

Hombal and Mahadevan to predict three-dimensional dam-

age growth under multi-axial, time varying fatigue loading

(Hombal & Mahadevan, 2013). The complex crack growth

was simulated in a reduced-order space, allowing for super-

vised learning without the need for planar approximations.

The resultant crack growth simulations benefited from a sig-

nificant reduction in computation times.

The aforementioned research into rapid, high-fidelity dam-

age prognosis is promising; however, there remains a dearth

of flexibility in these proposed models. For example, the

three-dimensional surrogate modeling approach presented in

(Hombal & Mahadevan, 2013) is arguably the most sophis-

ticated technique discussed above since it does not require

any planar assumptions. However, since the crack growth

steps are internal to the surrogate model, the crack growth

parameters are fixed unless accounted for in the initial train-

ing matrix. At best, this prevents the use of model selection

algorithms to determine an ideal crack growth law. At worst,

this means that uncertainty in crack growth rate parameters

cannot be accounted for in a prognostic framework. The lat-

ter issue is detrimental, as a large portion of the uncertainty

in RUL predictions for fatigue-driven damage results from

scatter in the crack growth rate parameters (Johnston, 1983;

Gope, 1999). While surrogate modeling is an excellent ap-

proach for reducing computation times of high-fidelity mod-

els, care must be taken not to restrict the dimensionality of the

parameter space considered in the Bayesian inverse problem.

This is especially important since supervised learning with

high-dimensional input spaces can cause both a decrease in

predictive accuracy and an increase in storage requirements.

Recently, (Leser et al., 2016) proposed an alternative ap-

proach to reducing computation times associated with high-

fidelity damage growth modeling. To address the issue of

flexibility, the surrogate model is confined to only a sub-

component of the overall damage growth model. Particularly,

the surrogate model replaces the high-fidelity, FE-based com-

putation of the damage driving forces; e.g., stress-intensity

factors (SIF) or energy release rates. It was determined that

the solution of the finite element system of equations was

the primary driver of the exorbitant computation times. By

restricting the surrogate model to this portion of the model-

ing process, model parameters such as those associated with

the crack growth rate were not dependent on the machine

learning process. As a result, both high degrees of fidelity

and flexibility were achieved while simultaneously reducing
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computation times by over three orders of magnitude. The

present paper expands on this work by providing a more rig-

orous demonstration of the predictive capabilities offered by

the surrogate modeling approach in the context of non-planar

crack growth. In particular, the effects of noise in two dimen-

sions is discussed along with an example of model discrep-

ancy and how it poses dangers in the context of probabilistic

prognosis.

2. PROGNOSIS FRAMEWORK

The prognosis framework is composed of the following four

components: (i) parameter estimation and uncertainty quan-

tification through Bayesian inference, (ii) global sensitivity

analysis to determine the parameters that contribute the most

variance to the final prediction, (iii) the crack growth model,

and (iv) the prognostic metrics used to quantitatively assess

the performance of the framework. While presented in the or-

der above for clarity, the first three components interact with

each other at various stages when forming the prognosis and

are order-independent.

2.1. Uncertainty Quantification and Propagation

The methods used here are based on the incorporation of

SHM or NDE with a given damage model in order to make

a prediction of remaining useful life for a unique component

or structure. This can be accomplished by making discrete

observations of the damage state throughout the life of the

monitored component, combining this information with prior

knowledge (e.g., knowledge of the component geometry, ap-

plied loads, and the material), and inversely quantifying the

uncertainties in the damage model through Bayesian infer-

ence. This uncertainty can then be propagated back through

the model, allowing for extrapolation to future time instances.

Bayes Theorem also provides flexibility in how these predic-

tions are updated as more observations are made.

The relationship between a parameter-dependent model re-

sponse, fk(Q), measurement errors, εk, and experimental

measurements,Υk, is given by the statistical model

Υk = fk(Q) + εk, (1)

where fk(Q), εk, and Υk are random variables and the mea-

surement errors are assumed to be unbiased, independent and

identically distributed. Here, Q, also a random variable, de-

notes the model parameters, and has realizations q. The

index of the available observations, k = 1, ..., nobs where

nobs is the total number of observations. The solution to the

Bayesian inverse problem is the posterior density, π(q|υobs),

which is the best estimate of the parameter densities based on

experimental observations and prior knowledge of the param-

eter distributions, π0(q). Formally, the relationship between

the posterior density, the prior density, and the observations

is given by Bayes’ Theorem, which takes the form

π(q|υobs) =
π(υobs|q)π0(q)

π(υobs)
=

π(υobs|q)π0(q)∫
Rp π(υobs|q)π0(q)dq

(2)

where p is the number of parameters and defines the dimen-

sion of the integral in Equation 2. Assuming normally dis-

tributed errors, εk ∼ N(0, σ2), damage diagnosis data are

incorporated through the likelihood,

π(υobs|q) =
1

(2πσ2)nobs/2
e−SSq/2σ

2

, (3)

where SSq is the sum of squares error between the model

response and the observed data, defined as

SSq =

nobs∑
k=1

[υobs,k − fk(q)]2. (4)

Equation 2 can be solved directly for simple problems of low

dimensionality, but, for most practical models, the direct so-

lution to the inverse problem becomes intractable. Quadra-

ture and sparse grid techniques can be used in certain cases

with low dimension; i.e., p ≤ 6 (Smith, 2013). An alternative

approach is to use Markov chain Monte Carlo (MCMC) tech-

niques. Utilizing assumed attributes of the posterior density,

such as those used to define Equation 3, Markov chains can be

constructed for the model parameters based on the observed

measurements. The stationary distributions of the chains con-
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structed in this manner is the sought-after posterior density,

thus approximating a solution to the inverse problem.

In general, when using MCMC techniques, increasing the

number of parameters requires an increasing number of sam-

ples to determine the stationary distribution of the Markov

chains. Before implementing a MCMC technique for param-

eter estimation, a global sensitivity analysis can be conducted

that allows for a quantified ranking of parameter contribu-

tion to the uncertainty in the predicted quantity of interest.

For large problems, reducing the dimension of the parame-

ter space is often necessary. Regardless, global sensitivity

analysis also provides insight into the problem and can prove

valuable whether parameters are eliminated from considera-

tion during the parameter estimation process or not.

2.2. Global Sensitivity Analysis

Variance-based global sensitivity analysis can be conducted

to determine the contribution of parameter uncertainty to

the output uncertainty (Saltelli, A., Ratto, M., Andrtes, T.,

Campolongo, F., Cariboni, J., Gatelli, D., Michaela, S. &

Tarantola, S., 2008; Smith, 2013). By analyzing parame-

ter sensitivity, non-influential parameters can be identified;

i.e., the parameter, Qi for i = 1, . . . , p where the influence,

I(Qi) ≈ 0. These are parameters that do not have a signifi-

cant effect on the output uncertainty. As such, these parame-

ters can be removed from the Bayesian inference procedure.

This is critical because the number of samples required to

reliably represent the posterior distribution is directly depen-

dent on the number of parameters, p, i.e., the dimension of

the multivariate distribution. Fewer samples means a faster

solution to the inverse problem.

Russian mathematician Ilya M. Sobol´ is credited with devel-

oping the variance-based measures of sensitivity referred to

as the Sobol´ indices. Consider the nonlinear model

Y = f(Q1, Q2, . . . , Qp). (5)

Assuming the model inputs, Qi, are independent, the out-

put variance of Y can be represented by the ANOVA-HDMR

decomposition (Rabitz & Aliş, 1999; Ma & Zabaras, 2010).

Here, the truncated, second-order decomposition is used such

that

Var(Y ) =

p∑
i=1

Vi +
∑

1≤i<j≤p

Vij (6)

where

Vi = Var[E(Y |qi)], (7)

Vij = Var[E(Y |qi, qj)]− Vi − Vj . (8)

Dividing both sides of Equation 6 by Var(Y ) results in the

sensitivity decomposition,

1 =

p∑
i=1

Si +
∑

1≤i<j≤p

Sij . (9)

Here, Si are the first-order sensitivity indices and, from Equa-

tions 6, 7, and 9,

Si =
Vi

Var(Y )
=

Var[E(Y |qi)]
Var(Y )

(10)

These indices measure the main effect of the parameter Qi
on the output variance, Var(Y ). For a purely additive model,∑p
i=1 Si = 1. However, it is also important to consider the

nonadditive features of the model. Equation 9 is a finite series

consisting of p + p(p−1)
2 terms. For high-dimensional prob-

lems, the calculation of all first- and second- order indices

becomes impractical, thus motivating the total-effect indices.

The total-effect indices for inputs Qi are given by the sum of

all the sensitivity terms in Equation 9,

STi = Si +

p∑
j=1
j 6=i

Sij . (11)

By decomposing the variance conditional on q∼i instead of

qi, where the subscript ∼ i implies all variables except those

of index i, the total-effect indices can be formally expressed

as
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STi = 1− Var[E(Y |q∼i)]
Var(Y )

=
E[Var(Y |q∼i)]

Var(Y )
. (12)

This term is a measure of the output variance attributed to Qi
including all of the variance caused by any interactions of any

order with Q∼i. To deem Qi non-influential, it is necessary

and sufficient that the total-effect indices be equal to zero, or

I(Qi) = 0 ⇐⇒ STi = 0. (13)

Note that this inherently implies that Si = 0, since STi ≥ Si.
It follows that a parameter can be fixed for STi ' 0, albeit

with model error due to the approximation (Saltelli, A., Ratto,

M., Andrtes, T., Campolongo, F., Cariboni, J., Gatelli, D.,

Michaela, S. & Tarantola, S., 2008; Smith, 2013).

The evaluation of each sensitivity index through a double-

loop, brute-force Monte Carlo approach with M samples for

each loop requiresM2 model evaluations. Since the choice of

M should be a function of the dimension, p, for a model with

more than a few parameters, this method becomes compu-

tationally prohibitive. However, Saltelli (Saltelli, A., Ratto,

M., Andrtes, T., Campolongo, F., Cariboni, J., Gatelli, D.,

Michaela, S. & Tarantola, S., 2008) derived a formulation

to obtain these indices with only M(p + 2) model evalua-

tions. The Saltelli algorithm was implemented in the current

work to compute both the first order and total-effect indices.

It should be noted that this method relies on the assumption

that all of the parameters are independent (i.e., uncorrelated).

2.3. Fatigue Crack Growth Model

The most expensive aspect of high-fidelity, FE-based frac-

ture modeling is the solution of the finite element equations.

The remeshing at each growth step is relatively fast. The

mesh-independent tracking of the crack geometry in three-

dimensional space is even faster, which is the basis for the

model developed in (Leser et al., 2016) and used in the

present work. The fatigue crack growth model is essentially

a three dimensional fracture mechanics algorithm wrapped

around a set of externally trained surrogate models which re-

place the finite element analysis (FEA) component of high-

fidelity fracture modeling. The code tracks a given crack

front in space and evolves the crack based on driving forces

obtained from the surrogate models. The code was developed

using the Python computing language (Van Rossum & Drake,

2011) as a general tool to reduce computation times associ-

ated with high-fidelity fracture simulation and is not limited

to the work presented herein.

A diagram illustrating the geometrical and symbolic basis of

the model is shown in Figure 1. The user defines the geometry

of the part or component in which the crack resides, the initial

crack front, and any required model parameters (e.g., Paris’

Law parameters). A component geometry is established as a

set of points, G ⊂ R3, a crack is initialized within this com-

ponent, and the crack is grown step-by-step by either a finite

number of cycles per step or a median crack front extension.

For any time, t, the crack front, Γ(t), exists in Cartesian space

as a 3 × Ω array, where Ω is the total number of explicitly

defined crack front points, γω . Each crack front point for

ω = 1, . . . ,Ω is a point in the Cartesian frame. In this sense,

γω ∈ Γ ⊂ G at any time, t. For each growth step, crack

driving forces at each point are returned from the surrogate

models based on the boundary conditions applied to the com-

ponent and the current geometrical state of the crack front.

These driving forces dictate how the crack evolves. At each

growth step, any crack front points that have grown outside

of the geometry (i.e., γω /∈ G) are deleted, and a new crack

front Γ is derived using a polynomial or spline fit. The curve

is extrapolated to the points at which it intersects with the

component or part geometry boundaries, and then Ω evenly

spaced points are interpolated between (and including) these

end points. The time varying crack path can be tracked by

storing the Γ(t) instance at each growth step.This process is

iterated until a stopping condition is reached.

FEA-based methods traditionally compute the crack driving

forces at each growth step by either an explicit representa-

tion where the crack surface and component assembly is re-

meshed at each step, or through the use of enriched elements

(e.g., XFEM). In either case, the system is solved and the

displacements are used to compute the crack driving forces.

As discussed, the finite element solution is typically the most

6



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016

γΩ 

γ0 

x 

z 

y 
Γ(t0) 

Γ (t1) 

Γ(tEOL) Points ∉ G are 

removed 

Γ (t) 

θkink γω 

Figure 1. General illustration of the fatigue crack growth
model geometrical framework.

computationally intensive part of this process. Therefore, the

proposed crack growth model replaces this process with a sur-

rogate modeling approach. Here, a large number, Φ, of crack

growth simulations are run using a FE-based, high-fidelity

fracture mechanics code a priori, or without knowledge of

the true crack path. Each of these simulations are then bro-

ken down by growth step, meaning that each explicitly mod-

eled crack front and its corresponding driving force profile are

treated as a single data point to be used to train the surrogate

models via supervised machine learning. If each simulation

provides η unique couples of crack front and corresponding

driving force profiles, the collection of all crack fronts from

all training simulations make up a training dataset of size∑Φ
s=1 ηs. For example, 30 crack growth simulations where

ηs = 100 for s = 1, . . . , 30 yields 3, 000 data points that can

be used for training.

Training the surrogate models in this sense has three primary

advantages. First, machine learning requires a sampling or

grid scheme that provides adequate coverage of the multidi-

mensional parameter space. For example, the starting coor-

dinates of the crack growth training simulations should be

distributed over the space of potential or expected crack initi-

ation sites. While it is impossible to simulate growth along all

of the infinite paths that exist for a given geometry, the goal

is to achieve an adequate distribution of cracks with which

to train the surrogate model, which is problem-dependent.

Levels I and III of the DDSim concept (Emery et al., 2009)

are useful here, as they can be used to focus the chosen ini-

tial conditions (e.g., starting location and starting orientation)

used for the training simulations. Secondly, by basing the

training data on expected crack paths, all of the crack geome-

tries included in the training set are reliably admissible and

cracks that are known to be infeasible based on the mechan-

ics of the problem are excluded. This not only avoids wasting

computation time on unnecessary simulations but also can

lead to better surrogate performance as it limits extraneous

training data. Finally, all of the time-consuming simulations

can be conducted in advance and in parallel utilizing high-

performance computing, removing them from the serial sam-

pling procedures used for Bayesian inference (e.g., MCMC).

Apart from reducing the computation times of high-fidelity

fracture simulations by orders of magnitude (Leser et al.,

2016), the hybrid fracture mechanics and machine learning

approach also enables a separation of model parameters that

dictate crack path (e.g., initiation location and boundary con-

ditions) and those that dictate crack growth rate (e.g., Paris’

Law parameters). As a result, only the former need to be

considered in the machine learning procedure, which reduces

upfront computational costs and adds a significant degree of

flexibility. For example, crack growth can be executed using

a variety of crack growth rate models without the need to re-

train. Additionally, the crack path history is easily accessible

at user-defined crack growth increments, which is ideal when

solving the Bayesian inverse problem.

2.4. Prognostic Metrics

It is critical when dealing with prognostics to be able to

evaluate the performance of the proposed approach. To this

end, prognostic metrics developed by (Saxena, Celaya, Saha,

Saha, & Goebel, 2010) were used herein to evaluate the per-

formance of the proposed approach. The hierarchical metrics

7



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016

allow for evaluation of the performance over time, which is

desirable because as more information is obtained, better pre-

dictions can be made. It should be noted that, since the cur-

rent work involves fatigue crack growth, all times are mea-

sured in cycles. In the case of damage prognosis, RUL is

typically of interest and is defined as

RUL = tEOL − tD, (14)

where tEOL is the end of life (EOL) or time of failure, and

tD is the time at which the last diagnostic measurement was

taken. Saxena et al. refer to this as a moving horizon, where

RUL is not only a function of the EOL, but also of the current

time. Since they are independent, the balance between the

rate at which predictions improve and the time rate of change

is critical. If the predictions do not improve quickly enough,

they may never prove useful. The problem is exacerbated by

the fact that the prognosis procedure cannot be conducted in

real time (i.e., there is a finite amount of time after the last

measurement before a prediction is made). In this paper, this

finite time will be assumed negligible, since the speed of the

prognosis was not a primary focus. Mathematically,

tpredρ = tDρ for ρ = 1, . . . , P (15)

where P is the total number of predictions made during the

component or structure’s lifespan, tpredρ is the time at which

the ρth prediction was made, and, as before, tDρ is the time

that the diagnosis data for tpredρ were gathered. Henceforth,

only tD will be used for simplicity.

The prognostic metrics applied in this work are as follows:

1. RUL vs. time plot: the basis for all of the prognostic met-

rics, it is a plot of the RUL predictions and uncertainty

over the life of the monitored component or structure.

2. Prognostic horizon, PH: a measure of time at which the

prediction reaches a desired level of accuracy with re-

spect to the EOL.

3. α-λ performance: a measure of how accurate the predic-

tion is with respect to the RUL at a given time. Note

that α and λ are parameters which are used to define the

metric and are defined in the subsequent paragraphs.

The RUL vs. time plot is based around the true RUL which

is plotted as a straight line, about which RUL predictions and

error bounds are drawn for qualitative assessment of the prog-

nostic algorithm’s performance as t → tEOL. The RUL pre-

dictions are represented by box plots. Here, the predicted

mean and median are represented by a small square symbol

and a line dividing the box, respectively. The upper and lower

quartiles of the data are represented by the extent of the box,

and the whiskers, represented as capped dotted lines, denote

the range of the data.

The prognostic horizon and the α-λ performance metrics are

more quantitative than the plot alone and depend on three

terms: α, β and λ. The first is a percent error where α ∈ [0, 1]

and is used to define a set of upper and lower error bounds,

α+ and α−, respectively. Since the two metrics considered

here deal with accuracy about two separate quantities, the

EOL and RUL, the definition of these bounds differ for each.

The same value of α can and should be used for both metrics.

The β parameter is used to define a portion of probability and

is used as a threshold. This value should be set equal to the

percentage of the probability in the predicted RUL PDF that

the user desires to lie within the α-bounds, where β ∈ [0, 1].

In this way, β is dependent on the purpose or mission of the

component or structure being monitored. Finally, λ ∈ [0, 1]

and is a time window modifier that simply normalizes the re-

gion of the time axis between the time the first prediction is

made, tD1
, and tEOL, such that

tλρ = tD1
+ λ(tEOL − tD1

). (16)

The α-bounds for the prognostic horizon metric are defined

as

α± = RUL± α · tEOL, (17)

whereRUL is the true value of RUL calculated using the true

EOL, tEOL, and Equation 14. The actual metric is defined as

8
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PH = tEOL − t∗D, (18)

where t∗D is the first time, tDρ , for which the percentage of

probability of the predicted PDF (obtained via integration

or a probability mass approximation) within the α-bounds is

greater than or equal to β. Hence, the PH metric is a mea-

sure of time indicating how long it took to reach an acceptable

accuracy in the EOL forecast.

Contrary to the prognostic horizon, the α-λ metric quantifies

the accuracy of the prediction of the time-varying RUL, and,

therefore, the α-bounded region for this metric decreases as

t→ tEOL. These bounds are defined by

α± = RUL · (1± α). (19)

The metric takes the form of the Boolean expression

α−λ accuracy =

1 if π(RULpred)α
+

α− ≥ β

0 otherwise
(20)

where π(RULpred)α
+

α− is the predicted RUL probability that

lies within the α-bounds. This metric is computed at each tλρ .

In the present work, these time values always correspond to

tDρ for ρ = 1, . . . , P . The only difference between these

time axes is simply that one is normalized over the region in

which predictions are made and the other is based on the true

time.

3. METHODS

3.1. Experimental Setup

To achieve controllable non-planar crack growth, an experi-

ment was developed based on the work in (Ingraffea, Grigo-

riu, & Swenson, 1991). Two holes were drilled in an edge-

notched specimen as shown in Figure 2. When loaded in ten-

sion, mixed-mode driving forces were induced by the pres-

ence of the holes, causing any cracks growing through their

region of influence to kink and grow toward the closest hole.

2
0
3

.7
 m

m
 

51.31 mm 

C L 

y 

x 

2 x Ø 6.38 mm 

Notch, 

2.07 mm 

Max Applied 

Stress, 

41.02 MPa 

Fixed 

displacement 

y 

x 

12.95 mm 

Figure 2. Description of the two-hole specimen used in the
experiment. For qualitative purposes, the Von-Mises stress
field is overlain on the schematic, highlighting the primary
regions of influence of the holes. Darker shades correspond
to higher stresses.

Depending on the y-coordinate of the notch, herein referred

to as y0, various degrees of kinking could be achieved. At

higher y0 values, the crack would grow into the hole. At low

y0 values, the crack would grow with minimal kinking. In

between these two extremes the crack would slope up toward

the hole, peak, and then partially slope back down to a rel-

atively horizontal growth condition before crossing an insta-

bility threshold and ultimately failing.

A random notch location between the aforementioned ex-

tremes was chosen for the current experiment at y0 = 6.73

mm, and the edge notch was cut at that location to a length of

2.16 mm using electrical discharge machining (EDM). The

9
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dimensions of the specimen were measured as-manufactured

using a ruler and calipers. The crack was grown from the

notch under a constant amplitude fatigue stress of 41.0 MPa

with a load ratio, R = 0.1, and a frequency of 10 Hz. Crack

tip location was measured at fixed cycle intervals using a trav-

eling optical microscope. The observed crack path from the

experiment is plotted in Figure 2. The crack grew into the

influence of the hole, exhibited non-planar growth, and then

grew to failure. The crack shown is the final configuration

before failure was deemed to have occurred. Note that, while

through-the-thickness measurements were not available, the

crack growth was modeled in all three dimensions to demon-

strate the capabilities of the model.

The goal of the present work was to utilize damage diag-

nosis data to accurately predict, with quantified uncertainty,

the RUL of a specimen containing an evolving non-planar

crack. Predictions were to be made at multiple times during

the specimen lifespan to demonstrate the effect of data on the

prognosis. For the purpose of this experiment, the damage

diagnosis data took the form of crack tip locations in the x-y

plane over time. Since the intention of the presented progno-

sis framework was to utilize noisy data from in-situ SHM or

automated NDE diagnosis systems, the high-precision visual

measurements were augmented with Gaussian white noise,

ε ∼ N(0, σ2), in an attempt to replicate results typical of

these systems. The variance of the noise distribution was

loosely based on the Rose criterion for image processing in

which a signal-to-noise-ratio (SNR) ≥ 5 is required to reli-

ably distinguish image features (Rose, 2013). The SNR was

defined here as the reciprocal of the coefficient of variation

(Parzen, 1961) for both the x and y one dimensional data ar-

rays, such that

SNRx =
µx
σx
, SNRy =

µy
σy
. (21)

Here, µ and σ are the mean and standard deviation of the

measurements, respectively.

Assuming that an in-situ SHM system would likely be less

accurate than an NDE scan, a mounted piezoelectric sensor

array was chosen as inspiration for the noise model. A sim-

ple linear array would likely have to be mounted somewhere

toward the bottom of the specimen and oriented in the x-

direction. Therefore, it was also assumed that SNRx >SNRy
since the incident waves would be approximately perpendic-

ular to the crack faces growing in the x-direction. Based on

these assumptions, SNRx = 5 and SNRy = 2.5 for the exper-

iment. The resulting dataset was thinned by 20% and divided

into 5 intervals; i.e., five predictions of RUL would be made,

each after a new interval of data was appended to the total

set. The vector of times at which these data were gathered

are tD = [350, 500, 650, 800, 950]T × 103 cycles1. Figure 3

shows the data divided into intervals overlain on the visually

observed crack, near the left hole. Future work should im-

plement an actual NDE or SHM system to gather the data to

avoid the above assumptions.

3.2. Surrogate Training

The surrogate models responsible for returning crack driving

forces were trained using the high-fidelity FE-based fracture

software FRANC3D2 in conjunction with the FE software

Abaqus.3 Training simulations were generated by varying the

following two parameters: (i) the initial starting position, y0,

which is the only parameter directly affecting crack path with

respect to the hole, and (ii) the initial crack length a0, which

is required for initiation from a straight notch of an unknown

length.

The training data were developed in three steps. Originally,

the number of complete simulations Φ = 30 as shown in Fig-

ure 4. All of the simulations were fixed at a single a0 and

varied y0 only. Next, 330 additional, single-step simulations

with 11 different values for a0 per each of the original y0 val-

ues were added to the dataset under the assumption that these

small cracks would result in paths nearly identical to the orig-

inal 30 simulations. Finally, the dataset was augmented by

manually varying the crack front shape at each growth step,

in all simulations. Five different crack front shapes were used

ranging from perfectly straight (i.e., a midpoint extension of

1Note that this time vector and all subsequent times herein will be reported
as a count of complete fatigue cycles. True time can be obtained by dividing
the number of cycles by the frequency used for the experiment, 10 Hz

2See reference (“FRANC3D Reference Manual, Version 6”, 2011)
3See reference (“Abaqus/CAE User’s Manual, Version 6.12”, 2012)

10



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016

Figure 3. Damage diagnosis obtained via visual measurements of the crack tip location with added noise and (SNRx = 5 and
SNRy = 2.5). The dotted lines represent the boundaries of the diagnosis intervals and represent the five points in time at which
predictions were made; tD = [350, 500, 650, 800, 950]T × 103 cycles, respectively.

zero for a parabolic curve) to an exaggerated curve (i.e., a

midpoint extension of 0.127 mm). These augmented shapes

allowed the surrogates to reach equilibrium during growth

in spite of small numerical errors in the crack propagation.

In total, the training simulations resulted in 16, 229 training

points, each consisting of one unique crack front and its corre-

sponding SIF profiles (i.e., KI ,KII , and KIII at each front

point, γω). The crack growth algorithm and surrogate model

were verified using FRANC3D simulations that were not part

of the original training set, and validation was carried out us-

ing experimental crack growth data. The details of the train-

ing process, the verification, and the validation were reported

in (Leser et al., 2016) and will be omitted here for brevity.

3.3. Detailing the Crack Growth Model

The conceptual framework of the crack growth model was

presented earlier in Section 2.3. Due to its flexibility, a va-

riety of fracture mechanics models can be plugged into this

framework. The specific equations used to dictate the frac-

ture growth in the present work are outlined in this section.

For more details, the reader is referred to the work in (Leser

et al., 2016), which used the same crack growth model.

To incorporate the effects of the load ratio, R, on the crack

Figure 4. Depiction of the original 30 crack growth simula-
tions comprising the base of the training dataset. Screenshot
taken from the fracture analysis software FRANC3D.1

11
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growth rate, da
dN , Walker’s modification of the Paris’ Law

(Walker, 1970),

da

dN
= C

[
∆K

(1−R)1−m

]n
, (22)

was chosen as the crack growth rate model. Here, C, m and

n are empirical constants and

∆K = KI,max −KI,min. (23)

where KI is the mode I SIF. Note that R =
KI,min
KI,max

. The

mode II SIF,KII plays a significant role in the kinking behav-

ior of the crack. In the present work, the maximum tangential

stress criterion (Erdogan & Sih, 1963) is used to dictate how

the crack turns under mixed-mode SIFs,

θkink = arg max
θ

(
Kr
I (θ)

)
, (24)

where, ignoring high-order stress terms,

Kr
I (θ) = σθθ

√
2πr

= cos
θ

2

[
KI cos2 θ

2
− 3

2
KII sin(θ)

]
.

(25)

is the resolved mode I SIF and σθθ is the tangential stress.

Combining Equations 23 and 25, an effective equivalent ∆K

can be defined as

∆Kee = Kr
I,max −Kr

I,min. (26)

which can then be applied to Equation 22.

In the three-dimensional implementation of the crack growth

model, these equations are applied to each crack front point,

γω , to determine the crack growth rate, da
dN ω

. The crack front

is then advanced using a median extension approach, where

the median extension is defined as

∆aω = ∆amedian

[
da
dN ω

da
dN median

]
, (27)

and ∆amedian is a user-defined value, and da
dN median

is the

median of da
dN ω

for ω = 1, . . . ,Ω. Using the median exten-

sion approach requires that the number of cycles to grow the

front at each point be computed through integration of the

crack growth rate equation over the ∆aω ,

∆Nω =

∫ ∆aω

0

C−1

[
∆Kee

(1−R)1−m

]−n
d(∆aω). (28)

This means that the number of cycles returned at each front

point will be different, albeit often with a standard deviation,

σNω < 1 cycle. The final cycle count used for the crack

growth step, ∆N∗ =
∑Ω
ω=1 ∆Nω . It should also be noted

that the SIF term is a continuous function of the crack length,

so an assumption must be made as to its functional form. This

relationship was assumed to be linear in the current work.

Finally, failure was dictated by a critical mode I SIF criterion.

If, at any crack front point,

KI,max > KIC (29)

where KIC is the critical mode I SIF and is a material prop-

erty, then the failure is deemed to have occurred. Uncer-

tainty in KIC were not considered. Instead, the experi-

mentally observed crack geometry was inserted into a FE

model of the specimen using FRANC3D, and the value of

KI,max at failure was calculated and used to set KIC =

833.96 MPa
√

mm.

4. RESULTS

4.1. Sensitivity Analysis

Global sensitivity analysis was conducted using Saltelli’s al-

gorithm (Saltelli, A., Ratto, M., Andrtes, T., Campolongo, F.,

Cariboni, J., Gatelli, D., Michaela, S. & Tarantola, S., 2008).

The parameters considered in the sensitivity analysis were the

initial y-coordinate of the crack, y0, the initial crack length,

a0, and the Walker model parameters, C, n,R, and m. The

parameter space was defined as shown in Table 1. The ini-

tial distributions were chosen to encompass the extremes of

12
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the knowledge of the specimen and previous research of the

crack growth rates in aluminum alloy 2024-T3. While the

RUL is the primary output of interest for prognosis, the cycle

values at EOL over the parameter space defined in Table 1

varied over multiple orders of magnitude, causing difficulties

when calculating the sensitivity indices. Instead, an approach

was adopted in which the variance of crack tip coordinates

in the x and y directions due to the varying parameters were

used to calculate the first-order and total-effect Sobol´ indices

over time.

The sensitivity analysis results for the x-coordinate are shown

in Figure 5. The figure shows Sobol´ indices plotted over a

normalized time for simplicity (i.e., cycles divided by true

end of life). Examining the first-order indices, Si, the Paris

coefficient,C, and the Paris exponent, n, are the most influen-

tial parameters, which is to be expected as these are the two

primary drivers of the crack growth rate. The effect of the

load ratio, R, was also evident, and its Sobol´ indices over-

took n as the number of cycles approaches the end of life. The

remaining parameters, a0 and y0, are approximately zero over

time. While not clear in the figures, both the first-order and

total-effect indices for a0 exhibit peaks at time zero, which is

intuitive since it was the only parameter affecting the value of

x for that instant. This peak was ignored since these values

quickly decline for times greater than zero. From Equation

13, the total-effect indices must equal zero for a parameter to

be considered non-influential, which is the case for both a0

and y0. All of the crack growth rate parameters showed an

appreciable total-effect index and, therefore, were considered

influential with respect to the crack growth in the x-direction.

Sensitivity indices for the crack tip y-coordinate over time

are shown in Figure 6. As expected, only y0 has an appre-

ciable first-order effect, with the remainder of model param-

eters at or near zero. Note that some of the values were neg-

ative, which is an artifact of the approximations associated

with small or moderate sample sizes used with Saltelli’s al-

gorithm (Smith, 2013). The total-effect Sobol´ indices show

a marked increase over the first-order effects for the crack

growth model parameters, implying interactions among these

parameters. This result may be somewhat artificial or un-

Figure 5. First-order and total-effect Sobol´ indices for crack
tip x location over 1× 106 cycles (normalized)
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Figure 6. First-order and total-effect Sobol´ indices for crack
tip y location over 1× 106 cycles (normalized)

trustworthy, however. For example, it was not expected that

a0 or any of the growth rate parameters would not have an ef-

fect on the y-coordinate of the crack tip since it was assumed

that the crack path was independent of these factors. If the

lower grouping of ST,i values were considered zero as intu-

ition might suggest (i.e., an artificial bias was introduced), the

only two non-zero parameters would be y0 and C. The influ-

ence of C could possibly be explained by small kink angle

errors or large crack growth rates near the point at which the

crack approaches the hole and demonstrates significant non-

linear behavior.

Based on all of the information obtained from the global sen-

sitivity analysis, only a0 could be fixed with reasonable con-

fidence that it was non-influential. The remainder of the pa-

Table 1. Parameter distributions for global sensitivity analysis

Parameter Distribution Description
a0 U(0.05, 0.1) Initial crack length
log10(C) U(−10,−7) Log of the Paris’ Law coefficient
m U(0.0, 1.0) Load ratio exponent
n U(2.0, 5.0) Paris’ Law exponent
R U(0.0, 0.99) Load ratio
y0 U(0.18, 0.32) Crack initiation site

rameters were considered in the Bayesian inference problem.

Regardless, valuable information about the effect and inter-

action of parameters in the context of the crack growth model

was gained. Furthermore, a global sensitivity analysis, be-

sides the obvious utility, also tests the robustness of the model

as it requires evaluations over the entire parameter space.

4.2. Prognosis

4.2.1. Parameter estimation & uncertainty quantification

A solution to the Bayesian inverse problem of Equation 2 was

obtained using the experimentally observed crack tip mea-

surements in conjunction with Markov chain Monte Carlo

(MCMC) sampling. Parameter estimation using MCMC was

conducted five times in total using the data in Figure 3, once

for each interval as marked. Specifically, the uncertainty in

parameters was estimated at 350, 500, 650, 800, and 950

thousand fatigue cycles into the experiment, respectively. The

data at each interval consisted of all of the measurements up

to the respective cycle; i.e., the data used at a particular cy-

cle included all of the measurements from the beginning of

the test up to that point in time. Non-informative, or uniform,

prior distributions were used for all of the parameters at each

interval as shown in Table 2. This implies that each MCMC

run was considered independent from the others, and no prior

information was passed between the subsequent runs as might

be the case for a true Bayesian updating scheme. The adap-

tive Metropolis algorithm included in the PyMC python pack-

age (Patil, Huard, & Fonnesbeck, 2010) was used to generate

2× 105 samples, with a conservative burn-in of 1× 105 sam-

ples to ensure Markov chain stabilization. Geweke’s time-

series approach was utilized to diagnose chain convergence

(Geweke, 1992).
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Table 2. Parameter distributions for Markov chain Monte
Carlo sampling

Parameter Distribution Description
log10(C) U(−20,−1) log10 of the Paris’ Law coefficient
m U(0.5, 0.7) Load ratio exponent
n U(1.0, 20) Paris’ Law exponent
R U(0.09, 0.11) Load ratio
y0 U(0.01, 0.365) Crack initiation y-coordinate

Parameter estimation results in the form of marginal proba-

bility distribution functions (PDF) for all parameters and for

all five data intervals are shown in Figure 7. The bounds used

during parameter estimation for R and m were significantly

tighter than those used during the sensitivity analysis. The

bounds on these parameters were based on a conservative in-

terpretation of the expected accuracy of the load frame used in

the experiments. These parameters were unidentifiable given

the current set of data, and thus the MCMC procedure re-

turned uniform distributions (i.e., returned the prior distribu-

tion). It is possible that this was due to the tight bounds en-

forced through prior knowledge. Examining the remaining

parameters in the figure, the uncertainty decreases as more

data are added. However, it is also important to notice that

the distributions exhibit a significant shift at time tD5 after

the last interval, a topic that will be discussed more in the

subsequent sections.

Figure 8 shows the pairwise plots of the sampled parame-

ters after the fourth data interval was obtained. The samples

indicate a strong correlation between the Paris’ Law parame-

ters, C and n. This correlation is commonly reported in frac-

ture mechanics literature (Cortie, 1991; Carpinteri & Paggi,

2007). This correlation indicates that these two parameters

are not mutually identifiable. The correlation also violates

the assumptions of Saltelli’s global sensitivity analysis algo-

rithm, which was used herein and assumes independent pa-

rameters. Future work should investigate other methods such

as those presented in (Xu & Gertner, 2008) or (Li & Mahade-

van, 2016) which do not require this assumption. The shift in

parameter distributions can be seen again by comparing Fig-

ure 8 with the pairwise plots from the fifth update shown in

Figure 9.

4.2.2. Uncertainty propagation and RUL prediction

Once the uncertainty in the model parameters was quantified,

the prognosis could be formed by propagating these uncer-

tainties through the crack growth model and extrapolating

forward in time to the failure condition given by Equation

29. This process was conducted using a Monte Carlo sam-

pling approach in which 25, 000 samples were drawn from

the parameter distributions and passed to the model, which

then simulated crack propagation up to the EOL condition.

The final cycle counts for all 25, 000 simulations were aggre-

gated to form an EOL distribution. Using Equation 14, the

EOL distribution can easily be converted to an RUL distribu-

tion. This procedure was repeated five times, once for each

interval, and all simulations were conducted in parallel utiliz-

ing high performance computing.

The resulting RUL distributions are presented in the form of

an RUL vs. time plot in Figure 10. The shaded strip and

cone regions represent the α = 0.1 accuracy intervals asso-

ciated with the PH and α-λ prognostic metrics, respectively.

As discussed previously, the constant-width strip region can

be interpreted as an accuracy measure of how well the EOL

was predicted, while the cone indicates how well the RUL

was predicted. The cone shape is an artifact of the true RUL

being a monotonically decreasing function of time. Similar

to the parameter estimation results, the first four RUL predic-

tions exhibit convergence with a steady decrease in associated

uncertainty. However, it can now be observed that these pre-

dictions actually diverge from the true solution. Again, after

the last diagnosis interval at tD5 , the PDF shifts.

While it was difficult to determine whether the shift shown

in the parameter PDFs resulted in better accuracy, the shift in

the RUL distribution can be quantified since the ground truth

value is known. As shown, the final prediction enters both α

bounded regions. Figure 11 shows the predicted PDF of the

RUL at this point (i.e., obtained after the fifth data interval)

for clarity. The double dotted lines represent the α-bounds

associated with the α-λ metric. The difference between the

mean prediction and the true RUL is 4, 625 cycles, or a per-

cent error of 5.9%. While this result may seem satisfactory,
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Figure 7. Resulting PDFs from the Bayesian parameter estimation process using MCMC, updated over the 5 diagnosis intervals.
These intervals correspond to the values in tD = [350, 500, 650, 800, 950]T×103 cycles, respectively, which represent the times
at which the last data point in the interval was collected.
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Figure 8. Joint samples obtained from the parameter estimation for the 4th diagnosis interval, or tD4
= 800× 103 cycles.
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Figure 9. Joint samples obtained from the parameter estimation for the 5th diagnosis interval, or tD5
= 950× 103 cycles.
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Figure 10. RUL vs. time plot for the five updates of the diag-
nosis dataset. The solid black line represents the experimen-
tally observed RUL over time. The shaded strip (constant
width) and the cone-shaped regions represent the α = 0.1 ac-
curacy bounds corresponding to the PH and α-λ metrics, re-
spectively. The probabilistic prediction of RUL at each time,
tDi , is represented by a box plot as described in Section 2.4.

the ability to accurately predict the RUL is only part of a suc-

cessful damage prognosis scheme.

An accurate prediction must be made early enough for the

proper action to be taken, which is the motivation of the prog-

nosis metrics presented in (Saxena et al., 2010) discussed ear-

lier. Setting α = 0.1 and β = 0.25, the prognostic horizon,

PH = 78, 537 cycles. This represents the earliest time that

at least 25% of the probability in the forecasted RUL distri-

bution lies within the α-bounds. Here, PH corresponds to

the prediction made after the fifth data interval was gathered

(see Figure 10). Even if we set β = 0.1, the prognostic hori-

zon, PH = 528, 537. This corresponds to the second data

interval. However, as shown in Figure 10, the following data

update results in a RUL distribution that has near zero proba-

bility within the α-bounds.

Proceeding further through the prognostic metric hierarchy,

the α-λ metrics for the five data intervals are shown in Ta-

ble 3. This metric clearly captures the poor performance of

the metric for the first four data intervals, and quantifies the

Figure 11. PDF of the final RUL prediction (i.e., obtained
using all five intervals of damage diagnosis data).

Table 3. α-λ test results with α = 0.1 and β = 0.25.

Cycle λ Passes α-λ test
350, 000 0.00 False
500, 000 0.22 False
650, 000 0.44 False
800, 000 0.66 False
950, 000 0.88 True

percentage of time between the first prediction and the EOL.

This metric utilizes the cone-shaped bounds, which, in gen-

eral, provide a better prognostic evaluation since the RUL is

the true quantity of interest. Only 22% of the time available

for predictions remains when the predicted RUL distribution

satisfies the α-λ metric. The α-λ test can also be visualized

as demonstrated in Figure 12. As opposed to presenting a

Boolean pass or fail, this figure shows the probability of the

RUL PDF that lies within the cone-shaped α-bounds, regard-

less of the value of β. The double x-axes show the time in

cycles and as a percentage of time in the available prediction

window. The divergence from the true RUL is clearly shown

here between the second and fourth intervals along with the

sudden shift in accuracy after the fifth interval. The improve-

ment in accuracy results in 78% of the predicted probabil-

ity lying within the α-bounds, but with only 12% of the λ-

window remaining.
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Figure 12. Probability within the α-λ metric α-bounds (i.e.,
the cone-shaped bounds). The λ axis represents the percent-
age of time between the first prediction and the EOL.

5. DISCUSSION

The divergence of the predictions would be concerning if

the presented specimen was instead a real-world structure or

safety-critical component operating in the field. The idea that

the forecasts could shift from the true value while decreas-

ing in uncertainty is dangerous as it can result in either false-

positives or false-negatives, both of which could have drastic

consequences. The first suspect in the search for a reason be-

hind this divergence is the model. However, the model clearly

shows that it is capable of capturing the true RUL given ad-

equate data. The model cannot be entirely ruled out without

further testing, as there may be a form of model discrepancy

present in the region of growth occurring around the fifth data

update. Model discrepancy refers to cases where the model

is incapable of capturing certain physically observed behav-

ior. In a simple form, it is analogous to a polynomial curve fit

without enough degrees of freedom. Future work should in-

vestigate the existence and effect of potential model discrep-

ancies not only of the proposed surrogate modeling approach,

but also of the training simulator FRANC3D. As shown in

(Leser et al., 2016), the proposed model matches almost ex-

actly with the FRANC3D simulations for the validation cases.

The parameters chosen for the analysis represent another way

in which the model could be causing the poor predictions.

The choice to remove the parameter a0 based on the sensitiv-

ity analysis could have unforeseen consequences. The results

shown in Figure 6 show signs of numerical errors in the global

sensitivity analysis implementation. Perhaps this parameter

was more influential than shown. Furthermore, upon exami-

nation of the differences between the joint samples in Figures

8 and 9, there is a change observed in the parameter rela-

tionships. First, the sharp, almost linear correlation between

C and n that is so commonly reported in fracture mechanics

literature is much less pronounced. Additionally, slight corre-

lations now can be observed between the Paris’ Law param-

eters and y0, as well as between C and both Walker parame-

ters. This indicates that the interactions within the parameter

space enforced by the prior distributions may not completely

understood. It is possible that the Walker parameters require

a less restrictive prior, and that the uncertainty in the loading

was greater than previously thought. Future work should in-

clude a more expansive study of these correlations that appear

after the fifth update.

The model may be a part of the issues highlighted herein, but,

based on the sudden shift in parameter distributions and the

final PDF of the RUL, a stronger argument could be made

against the data instead. The crack growth data in the fifth

interval are the first of which that capture the primary non-

planar features of the crack behavior. It is not a coincidence

that this coincides with the shift in the prediction, and it is

likely that the shift would be more gradual if given one data

point at a time from this interval. This result is intuitive.

However, a more important concern is whether or not the

data in the second through fourth intervals are somehow neg-

atively impacting the results. This is the region where a di-

vergence from the true RUL is observed, and thus this is a

reasonable assumption. Even if it is accepted that forecasts

will only be usable after data have been gathered in the non-

planar region, the question remains whether or not the data

before that point are valuable or detrimental. It is possible

that removing the middle three intervals and only using the

first and fifth might reduce the uncertainty in the final predic-
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tion. After all, if accurate predictions can only be made after

800, 000 cycles into the fatigue life, it would still be desirable

to improve the accuracy within the time that remains. High

levels of accuracy in this region are especially important con-

sidering how close it is to the EOL.

All of the above issues are driven by the fact that the crack

growth is non-planar, which supports the idea that real-world

prognosis must be of concern to researchers in the field of

damage prognostics. The number of issues in all phases of a

prognostic framework appear to increase with complexity in

the crack growth behavior. Data become harder to obtain and,

therefore, more uncertain, and the modeling is more compli-

cated and increases the likelihood of model discrepancies or

user error. Both of these issues then complicate the Bayesian

inference and uncertainty propagation, culminating in diffi-

culties reaching the final goal of an accurate forecast of future

damage growth.

6. CONCLUSION

A flexible, high-fidelity yet rapid probabilistic framework for

fatigue damage prognosis was demonstrated for a metallic

specimen exhibiting non-planar crack growth. Damage diag-

nosis data in the form of visual crack tip measurements with

added noise were used to quantify the uncertainty in crack

growth model parameters through Bayesian inference and

Markov chain Monte Carlo sampling techniques. The com-

putational burden associated with high-fidelity crack growth

models was neutralized through the use of a previously devel-

oped modeling approach in which expensive finite element-

based computation of crack driving forces was replaced with

an efficient surrogate model. Driving forces returned by the

surrogate model were fed to a fully three-dimensional frac-

ture mechanics algorithm for crack propagation. The flexi-

bility of the crack growth model was demonstrated through

a global sensitivity analysis followed by the parameter esti-

mation procedure. Following their quantification, parameter

uncertainties were propagated forward in time to generate a

probabilistic prediction of the specimen’s remaining useful

life.

Results showed an initial divergence from the true solution

followed by a sharp increase in accuracy near the specimen

end of life. The shift in accuracy corresponded to the acquisi-

tion of observations of the primary non-planar features of the

crack, suggesting model discrepancy and faults in the data

(e.g., lack of data or misleading data) as possible reasons for

the early divergence in forecasts. Future work should inves-

tigate the role of both factors, as a system whose uncertainty

decreases but diverges from the truth is potentially danger-

ous. Upon inclusion of the data from the primary non-planar

region of crack growth, the new predicted mean converged

to the true remaining useful life value with a percent error of

only 5.9% and with 78% of the predicted probability lying

within 10% of the true value.

The discrepancy between the final prediction and those before

it is an important result from this work, as it demonstrates

not only the importance of rigorous prognostic verification

and validation, but it also offers a glimpse into some of the

real-world challenges that need to be addressed in the dam-

age prognosis field. The issues highlighted herein can be di-

rectly traced to the non-planar nature of the crack, suggesting

that models must be developed to accurately capture this be-

havior. Continued research in the area of rapid, high-fidelity

prognostic methods is paramount if health management tools

such as NASA’s Digital Twin are to reach their full potential.
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