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ABSTRACT 

 

Utilizing inverse uncertainty quantification techniques, structural health 

monitoring can be integrated with damage progression models to form probabilistic 

predictions of a structure’s remaining useful life. However, damage evolution in 

realistic structures is physically complex. Accurately representing this behavior 

requires high-fidelity models which are typically computationally prohibitive. In the 

present work, a high-fidelity finite element model is represented by a surrogate model, 

reducing computation times. The new approach is used with damage diagnosis data to 

form a probabilistic prediction of remaining useful life for a test specimen under 

mixed-mode conditions. 

 

 

INTRODUCTION 

 

Structural Health Monitoring (SHM) is motivated by the idea that knowledge of an 

individual structure’s current health state increases reliability through a systematic 

reduction of uncertainty [1]. However, SHM in this sense is inherently reactive, as 

damage must occur before diagnosis of the structural health provides any useful 

information. This can limit the utility of SHM, especially when applied to fatigue 

loading where remaining useful life (RUL) is of interest. A more comprehensive 

approach would be to utilize SHM systems to detect and quantify damage, but then 

extend this information through a prediction of how the damage will propagate and 

ultimately impact the structural RUL. This is the motivation for damage prognosis. 

In general, two primary challenges exist for damage prognosis. First, the problem 

is probabilistic in nature. SHM sensors cannot provide a deterministic assessment of 

the exact damage state, and the models used to predict how that damage progresses 

are, at best, approximations of the true underlying physics. Therefore, uncertainty 



quantification has a central role in damage prognosis. Second, the evolution of damage 

occurs at multiple length scales [2,3]. However, the macroscale is of primary interest 

for SHM-aided prognosis, since detectable damage typically falls into this regime. 

There are many fracture mechanics-based, one-dimensional growth models for 

macroscale fatigue cracks [4]. Most of these models stem from the work of Paris et al. 

[5] in which the crack growth rate is a function of empirical parameters and either the 

stress intensity factor (SIF) or the strain energy release rate. For idealized geometries 

and boundary conditions, these values can be computed analytically. A great deal of 

work has been devoted to fatigue damage prognosis using these types of models for 

both composite and metallic structures; see [3,6] for examples. In the context of SHM, 

these works typically use sensors to acquire in-situ damage accumulation data that are 

then used to inversely quantify the uncertainty in model parameters via Markov Chain 

Monte Carlo (MCMC) techniques [7]. These uncertainties can then be propagated 

back through the models to form a probabilistic prediction of RUL [3,6,7]. 

For SHM to be an effective tool, however, real-world structures must be 

monitored. Damage evolution in these structures progresses in two or three 

dimensions with mixed-mode driving forces [8]. Finite element (FE) analysis is 

capable of capturing this behavior, but often at too high a computational cost for use 

with MCMC methods, which can require thousands to millions of model simulations 

to reliably sample from the target posterior distribution [7]. Parallel MCMC 

algorithms [9] constitute an active area of research that could eventually alleviate this 

burden. However, these methods depend on a set of Markov chains (i.e., each 

realization is dependent on its predecessor) and, therefore, still require an intractable 

number of simulations if utilizing FE analyses.  

Surrogate models have garnered a great deal of attention for their ability to 

quantitatively represent the primary features of high-fidelity models at a fraction of the 

computational cost [7,10]. Research into high-fidelity damage prognosis over the last 

five years has focused primarily on employing surrogate modeling techniques [10-14]. 

Sankararaman et al. [10,11] used the FE software ANSYS to develop surrogate 

models capable of returning an equivalent SIF for a given three-dimensional crack 

configuration and multi-axial loading condition based on a characteristic plane 

approach. Ling and Mahadevan then integrated this approach with SHM data to 

develop probabilistic fatigue damage prognostics for aluminum test specimens [12]. 

Hombal et al. expanded on this work by presenting a two-stage technique for planar 

approximation of a non-planar crack [13]. The semi-analytical approaches in [10-14] 

retain some advantages of high-fidelity modeling but simplify the fundamental growth 

mechanics and restrict potential crack shapes. 

More recently, Hombal et al. [14] offered an approach based on non-parametric 

representations of arbitrary crack fronts that were dimensionally reduced via Principal 

Component Analysis (PCA) [15] for use as input to a surrogate model. In this way, 

complex crack evolution can be modeled in a low-dimensional space, reducing 

computation times while retaining the mechanics of the non-planar growth. However, 

since the growth is internal to the surrogate model, the method is inherently dependent 

on a user-defined growth rate function. Without access to SIF information, this 

prohibits the consideration of the uncertainty in growth rate parameters, which are 

known to exhibit a high degree of scatter. 

In the present work, a flexible surrogate model for high-fidelity fatigue crack 

growth simulations is developed based on a separation of the dynamic and quasi-static 



aspects of damage evolution. The proposed method enables modeling arbitrary crack 

geometries and does not restrict access to growth parameters, making it well suited for 

probabilistic prognosis. The remaining sections of this paper are organized as follows. 

First, the prognosis method is presented over three subsections discussing the growth 

algorithm, the surrogate modeling approach, and the SHM-based inverse uncertainty 

quantification problem, respectively. Next, an experiment to validate the new method 

is developed, followed by the presentation and discussion of results. 

 

 

DAMAGE PROGNOSIS METHOD 

 

Fatigue Crack Growth Algorithm 

 

FRANC3D is a fracture mechanics code wherein arbitrary, three-dimensional, 

geometrically-explicit cracks are inserted into existing finite element meshes and 

grown via re-meshing. Stress intensity factors (SIFs) are calculated by evaluating the 

M-integral at the crack tip [16]. Unfortunately, a single crack growth simulation can 

take hours to complete, with the majority of this time consumed by the FE solution at 

each growth step. The goal of the presented work was to apply surrogate modeling 

techniques to develop an analog to FRANC3D which only takes seconds to run.  

To accomplish this goal, the FE solutions, and, thus, the need for a mesh, were 

replaced by a surrogate model. The FRANC3D approach to modeling crack growth 

could then be adapted to represent a crack parametrically as a collection of m points in 

space (Figure 1). In the present work, only the front was modeled, although, in a more 

general approach, the crack surface could be represented explicitly. Crack growth is 

calculated on a point-by-point basis. An initial crack front is supplied by the user, and 

then the surrogate model provides the mode I, mode II, and mode III SIFs at each front 

point. It is important to note that, by definition, these values correspond to a local set 

of orthogonal axes at each crack front point. These axes are defined by the crack front 

normal (   ) and tangent (   ) unit vectors and their cross product (   ).  
 

 

 
 

Figure 1: General illustration of the proposed fatigue crack growth process in an arbitrary volume. 
 



If subjected to mixed-mode conditions, the crack can change directions or “kink.” 

A kink angle,      , can be calculated via a user-defined algorithm. At each front 

point,       is used to rotate the local axes about    , resulting in a set of m new growth 

directions. The SIFs are converted to an effective equivalent SIF range,     , which, 

for the present work, was defined as       
        

 , where these two terms 

correspond to the projection of the SIFs perpendicular to the new growth direction at 

maximum and minimum load, respectively. Finally, crack front points are advanced 

along the growth directions by assuming a constant growth rate over a small number 

of cycles,   , such that the crack growth magnitude            , where 

      is the one dimensional growth rate. Therefore, the accuracy of the model is 

dependent on the number of cycles per growth step, which, without a mesh, can be 

sufficiently small. The crack growth rate is defined by a user-specified crack growth 

law. Herein, Walker’s modified Paris Law is used to incorporate R-ratio effects [17], 

 

   

  
   

    

         
 

  (1) 

 

Here,      and   are empirical parameters, and          
       

  . Any crack growth 

model can be used in place of (1). Once the crack growth increment and direction are 

defined, the current crack front can be propagated forward in time for    cycles. The 

new crack front points are then compared to the geometric boundaries of the host 

component. A spline is fit through the front and trimmed anywhere the crack has met a 

free surface, as shown in Figure 1. A new set of m crack front points is then 

interpolated along the spline, comprising the new crack front. The crack growth 

process is iterated, and the crack front at each subsequent step is stored until a 

stopping condition is met (e.g.,               ). 

 

Surrogate Model 

 

Surrogate modeling involves representing complex physical models as an input-

output (IO) relationship. In general, as the number of inputs to the surrogate model 

increases, the training set required to characterize the parameter space grows 

exponentially. The total number of parameters to describe a single crack front in three 

dimensions is 3m, resulting in an intractable IO relationship. However, as in [14], 

Principal Component Analysis (PCA) can be used to solve this issue. PCA is a 

statistical technique for dimensional reduction of a dataset consisting of correlated 

variables where data are transformed to a new set of variables called the principal 

components. These components are uncorrelated and ordered such that the first few 

typically account for the majority of the variance in the original dataset [15]. PCA was 

used to reduce the dimensions of both the crack fronts and their associated SIF 

profiles. As an example, crack fronts with 3m=60 were dimensionally reduced to only 

two parameters while still accounting for 99% of the variance. 

Furthermore, reducing complexity in the IO relationship itself is necessary for 

tractability. By isolating the crack growth mechanics and only using the surrogate 

model to capture the quasi-static evaluation of the SIFs, the modeled relationship 

becomes simple, direct, and well-defined. Crack geometry and loading serve as the 

inputs and the output is a PCA-reduced representation of the corresponding SIFs. The 

PCA reduction can then be inverted to recover the original SIF solution for a given 



geometry with a mean absolute percentage error on the order of 0.5% at each front 

point. Gaussian Process Regression (GPR) was chosen to build the surrogate model 

because of its ability to both capture this complex IO behavior and to quantify the 

uncertainty in the surrogate model predictions [7]. For use with MCMC, the surrogate 

model requires training data that are dispersed over the infinite number of potential 

crack geometries, which is feasible due to three training-specific advantages of the 

proposed method. First, a crack growth simulation consisting of S steps produces S 

training data points since the IO relationship is independent of cycle count. Second, 

training data can be generated in parallel, reducing the upfront computational burden. 

Finally, training data can be added if the initial training set is deemed insufficient. 

 

SHM and Inverse Uncertainty Quantification 

 

In SHM, damage diagnosis data collected over the life of an individual component 

or structure can be used to inform the prognosis through what is known as Bayes’ 

Theorem of Inverse Problems [7,18]. Assuming unbiased, independent and identically 

distributed measurement errors (i.e.,           ), the relationship between the model 

and the experimental observations is expressed as 

 

                      (2) 

   

where   ,      , and   are random variables representing the experimental 

measurements, model response, and model parameters, respectively. The number of 

observations is denoted by  . The goal is to determine the posterior density of   given 

the observed realizations,     , of   . Considering   to be the realizations of  , Bayes’ 

Theorem can be used to formulate the inverse problem as follows: 
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where           is the posterior density of interest,       is the prior density in which 

any a priori knowledge of the parameters can be incorporated, and   is the number of 

parameters. The SHM data influence the problem through the likelihood,          ,  

 

 
       

 

         
 

              
   

       (4) 

 

The denominator of (3) is intractable for most problems, especially when   is large. 

However, Markov Chain Monte Carlo (MCMC) techniques, whose stationary 

distribution is the posterior density in (3), allow for a solution to the inverse problem. 

 

 

EXPERIMENTAL VALIDATION, RESULTS & DISCUSSION 

 

Two tension-tension fatigue crack growth experiments were conducted using 

edge-notched, Al 2024-T3 specimens. Adapted from work by Ingraffea et al. [19], 

holes were drilled (Figure 2) to induce localized mix-mode conditions, causing nearby 

cracks to kink. A constant amplitude stress of 5.95 ksi was applied with R = 0.1 at a 



frequency of 10 Hz. The first test was stopped once the crack growth rate exceeded 

       in/cycle. This was assumed to correspond to a conservative end of life (EOL) 

condition,          , where        = 26.8 ksi∙in
1/2

 was determined by recreating the 

final, as-measured crack in FRANC3D, applying the maximum load, and computing 

  . From the second experiment, a crack breaching the hole was determined to arrest 

for at least 3 million cycles before reinitiating, which was accounted for in RUL 

calculations. The observed fatigue crack path for the first specimen is presented in 

Figure 2. While no sensor-based SHM data were available for these experiments, 

visual crack tip measurements were taken over the specimen lifespan. To simulate the 

capabilities of guided wave interrogation, Gaussian white noise was added to the x and 

y measurements with variances, σ
2
, of 0.0004 and 0.002 in

2
, respectively. The five 

measurements used for prognosis are represented by circled ‘x’ marks in Figure 2.  

To train the surrogate adequately over the wide range of potential crack starting 

locations, thirty initial y locations were simulated, uniformly spaced from 0.0 to 

0.3782 inches, each with a length of 0.08 inches. The origin is as shown in Figure 2. 

Training simulations were carried out using FRANC3D with median extension steps 

of 0.008 inches and a crack front template radius of 0.004 inches. In both the training 

and prognosis simulations, growth increments and kink angles were calculated using 

the Walker model (1) and Maximum Tangential Stress (MTS) theory [16], 

respectively. The final set of training data consisted of 3,000 first order relationships 

between a given crack front geometry and the corresponding SIFs. While the proposed 

methodology allows for the inclusion of loading as an input, this was not necessary in 

the present example. The training data were fit with a set of GPR models using the 

scikit-learn module for machine learning in Python [21]. Using the surrogate model, 

run times for crack growth simulations were reduced from approximately 3 hours to 

under 12 seconds – nearly three orders of magnitude faster. A verification of the 

surrogate model was conducted but will not be discussed further. 

The Bayesian inverse problem was solved utilizing the acquired SHM data and an 

adaptive MCMC algorithm based on the Python module PyMC [22]. A burn-in of 

5,000 samples was used to encourage sampling from the true posterior density, and 

then 10,000 samples were drawn. The resulting chains were thinned by retaining every 

tenth sample, and errors were assumed to be unbiased, independent and identically 

distributed. For illustrative purposes, only two model parameters were considered to 

be random variables: (1) the starting location of the crack,     , and (2) the Walker 

exponential parameter,  . A global sensitivity analysis [23] would typically be 

conducted to inform these choices but was excluded for simplicity. Uninformative 

prior densities were assumed such that                    and             . Updated 

parameter probability density functions (PDF) were inversely determined, from which 

1,000 model realizations were constructed using a Monte Carlo sampling method.  

These realizations were used to generate a normalized histogram for the RUL, as 

well as prediction and confidence bounds for the anticipated path, as seen in Figure 3a 

and Figure 3b, respectively. Since it is possible that the crack will grow into the hole 

and arrest, the histogram of predicted RUL in Figure 3a is bimodal (i.e., two distinct 

regions of probability exist). While the predicted mean RUL is less than the observed 

value by 77,537 cycles, the observed value still falls within the predicted PDF. This 

discrepancy is likely due to the noise level and sparse nature of the data. Furthermore, 

in Figure 3b, it appears that the predicted mean path agrees more with the data than the 

observed path, which was viewed as a validation of the proposed methodology. 



 
 

Figure 2: Abaqus [20] FE model, experimental crack path, and SHM data, designated by the 'x' marks.  

 

 

 

 
 

Figure 3: (a) Histogram of RUL samples compared with the observed RUL and (b) the predicted crack 

path with 95% confidence and prediction bounds compared with the observed crack path. 

 

 

SUMMARY 

 

A new method for probabilistic prognosis of fatigue crack growth was 

demonstrated. Prohibitively expensive stress intensity factor computations were 

replaced by an efficient surrogate model trained via high-fidelity finite element 

simulations. The proposed approach was validated through fatigue crack growth 

experiments with induced, localized, mixed-mode conditions. Simulated SHM data 

were used to inversely quantify the uncertainty in model parameters, including those 

associated with the crack growth rate. These uncertainties were then propagated 

through the modeling framework to successfully predict the observed RUL and crack 

growth path. Model run times were reduced from around three hours to under 12 

seconds. Although the experiment was relatively simple, the modeling framework was 

developed generally, and the same techniques can be applied to a variety of more 

complex, three-dimensional SHM problems requiring high-fidelity prognosis.   
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